
Appendix K Traffic Impact Study

SADDLE CREST TRAFFIC IMPACT STUDY (01/18/12) County of Orange, California

transportation planning • traffic engineering acoustical engineering • parking studies

January 18, 2012

Mr. Mike Eadie RUTTER SANTIAGO, LP. 18012 Cowan, Suite 200 Irvine, CA 92614

Subject: Saddle Crest Traffic Impact Study, County of Orange (Updated 1/18/12)

Dear Mr. Eadie:

RK ENGINEERING GROUP, INC. (RK) is pleased to submit this traffic impact study for the proposed Saddle Crest residential development located in the County of Orange. This report provides a summary of the findings, analysis procedures, and evaluation of the proposed project with respect to on-site and off-site traffic impacts pursuant to the County of Orange requirements.

This Traffic Impact Study has also addressed the impacts of the project with respect to Santiago Canyon Road pursuant to the Orange County Growth Management (GM) Transportation Implementation Manual (TIM). Based upon a review of the current procedures, it has been found that the analysis of the Santiago Canyon Road roadway segments based upon the Highway Capacity Manual (HCM) "Percent Time Following" methodology is not appropriate for Santiago Canyon Road in this area. An alternative procedure has been developed based upon typical Orange County public agency requirements with respect to volume capacity ratio of a roadway segment. This methodology has been included in the Traffic Impact Study and it is recommended that the TIM be modified to incorporate this methodology. The volume capacity ratio methodology more appropriately reflects actual operating conditions along Santiago Canyon Road.

Based upon this review, the project can be accommodated within the planned circulation system, given that the recommended improvements stated in this study are implemented. The study recommendations are included in the "Findings and Recommendations" section of this report.

Mr. Mike Eadie RUTTER SANTIAGO, LP. January 18, 2012 Page 2

RK is pleased to assist RUTTER SANTIAGO, LP on Saddle Crest and looks forward to working with you again in the future. If you have any questions regarding this study, or would like further review, please do not hesitate to call us at (949) 474-0809.

No. 0555 Exp. 12/31/13

Sincerely,

RK ENGINEERING GROUP, INC.

Robert Kahn, P.E.

Principal

Bryan Estrada

Transportation Planner

Attachments

SADDLE CREST TRAFFIC IMPACT STUDY County of Orange, California

Prepared for:

RUTTER SANTIAGO, LP 18012 Cowan, Suite 200 Irvine, CA 92614

Prepared by:

RK ENGINEERING GROUP, INC. 4000 Westerly Place, Suite 280 Newport Beach, CA 92660

> Robert Kahn, P.E. Bryan Estrada Rogier Goedecke

January 18, 2012

Table of Contents

<u>Sect</u>	tion	<u>Page</u>
1.0	Introduction	1-1
	A. Purpose of Report and Study Objectives	1-1
	B. Site Location and Study Area	1-1
	C. Development Project Description	1-2
	D. History and Context	1-3
2.0	Methodology	2-1
	A. ICU Methodology (Signalized Intersections)	2-1
	B. HCM Methodology (Unsignalized Intersections)	2-3
	C. Santiago Canyon Road Capacity Methodology	2-4
	D. Acceptable Level of Service and Significant Impact Criteria	2-8
3.0	Area Conditions	3-1
	A. Study Area	3-1
	B. Existing Traffic Controls and Intersection Geometrics	3-1
	C. Existing Traffic Volumes	3-1
	D. Existing Level of Service	3-2
	E. OCTA Master Plan of Arterial Highways	3-3
4.0	Projected Traffic	4-1
	A. Project Traffic Conditions	4-1
	1. Trip Generation	4-1
	2. Trip Distribution and Assignment	4-2
	3. Modal Split	4-2
	4. Project Peak Hour Traffic Volumes	4-3
	5. Existing Plus Project Peak Hour Traffic Volumes	4-3
	B. Background Traffic 1. Method of Projection	4-4 4-4
	 Method of Projection Traffic Forecast Methodology 	4-4 4-4
	C. Interim (Year 2015) Without Project Traffic Volumes	4-4 4-6
	D. Interim (Year 2015) With Project Traffic Volumes	4-6
	E. Buildout (Year 2035) Without Project Traffic Volumes	4-7
	F. Buildout (Year 2035) Without Project Traffic Volumes	4-7
5.0	Traffic Analysis	5-1
-	A. Capacity and Level of Service Improvement Analysis	5-1
	1. Level of Service for Existing Conditions	5-1
	2. Level of Service for Existing Plus Project Conditions	5-1
	3. Level of Service for Interim (Year 2015) Without Project	5-2
	4. Level of Service for Interim (Year 2015) With Project	5-3

<u>Sect</u>	tion (cont'd)	Page
		5. Level of Service at Buildout (Year 2035) Without Project	5-3
		6. Level of Service at Buildout (Year 2035) With Project	5-4
		7. Significant Impacts	5-5
		8. Traffic Signal Warrant Analysis	5-6
6.0	San	tiago Canyon Road Analysis	6-1
	Α.	Santiago Canyon Road Analysis Evaluation	6-1
	В.	Santiago Canyon Road Level of Service Analysis	6-4
7.0	Site	Access and On-Site Circulation	7-1
	Α.	Site Access	7-1
	В.	On-Site Circulation	7-1
	C.	Gateway Queuing Analysis	7-2
8.0	Find	lings and Recommendations	8-1
	Α.	Intersection Analysis Summary	8-1
	В.	Santiago Canyon Road Analysis	8-3
	C.	Proposed Mitigation Measures	8-3
	D.	Related Plans and Programs	8-3
	E.	Road Fee Programs	8-4
	F.	Circulation Recommendations	8-5
		1. On-Site	8-5
		2. Area-Wide	8-5
		3. Fair Share Analysis	8-7
	G.	Intersection Sight Distance, Safety and Operational Improvements	8-7
	Н.	Conclusions	8-7

List of Attachments

	-	-	-	_	
F	_	=	ı_	5.4	
FΥ	n		n	П	ГС
-			v	•	LJ

Location Map	Д
Site Plan	В
Existing Lane Geometry and Intersection Controls	C
Existing Peak Hour Intersection Volumes and Average Daily Traffic (ADT)	D-1
Existing Peak Hour Roadway Segment Volumes Along Santiago Canyon Road	D-2
Orange County Transportation Authority (OCTA) Master Plan of Arterial Highways and Roadway Cross Sections	E-1
Orange County Transportation Authority (OCTA) Existing and Proposed Bikeways	E-2
Project Trip Distribution	F
Project Peak Hour Intersection Volumes and Average Daily Traffic (ADT)	G-1
Project Peak Hour Roadway Segment Volumes along Santiago Canyon Road	G-2
Existing Plus Project Peak Hour Intersection Volumes and Average Daily Traffic (ADT)	H-1
Existing Plus Project Peak Hour Roadway Segment Volumes along Santiago Canyon Road	H-2
Interim (Year 2015) Without Project Peak Hour Intersection Volumes and Average Daily Traffic (ADT)	I-1
Interim (Year 2015) Without Project Peak Hour Roadway Segment Volumes along Santiago Canyon Road	I-2
Interim (Year 2015) With Project Peak Hour Intersection Volumes and Average Daily Traffic (ADT)	J-1
Interim (Year 2015) With Project Peak Hour Roadway Segment Volumes along Santiago Canyon Road	J-2
Buildout (Year 2035) Without Project Peak Hour Intersection Volumes and Average Daily Traffic (ADT)	K-1

Exhibits (cont'd)

Buildout (Year 2035) Without Project Peak Hour Roadway Segment Volumes along Santiago Canyon Road	K-2
Buildout (Year 2035) With Project Peak Hour Intersection Volumes and Average Daily Traffic (ADT)	L-1
Buildout (Year 2035) With Project Peak Hour Roadway Segment Volumes along Santiago Canyon Road	L-2
Intersection Sight Distance	М
Vertical Sight Distance	N
Recommendations	0

<u>Tables</u>

Intersection Analysis for Existing Conditions	1
Trip Generation Rates	2
Trip Generation	3
Intersection Analysis for Existing Plus Project Conditions	4
Intersection Analysis for Interim (Year 2015) Without Project Conditions	5
Intersection Analysis for Interim (Year 2015) With Project Conditions	6
Intersection Analysis for Buildout (Year 2035) Without Project Conditions	7
Intersection Analysis for Buildout (Year 2035) With Project Conditions	8
Summary Intersection Analysis	9
Santiago Canyon Road Segment Analysis	10
Required Intersection Improvements	11
Project Fair-Share Intersection Contribution	12

Appendices

Traffic Count Worksheets	А
Approved Scope of Work	В
Existing Conditions Intersection Analysis Worksheets	C
County of Orange Saddle Crest Traffic Impact Study Traffic Forecast Data 2015 and Buildout	D
Existing Plus Project Conditions Intersection Analysis Worksheets	Е
Interim (Year 2015) Without Project Conditions Intersection Analysis Worksheets	F
Interim (Year 2015) With Project Conditions Intersection Analysis Worksheets	G
Buildout (Year 2035) Without Project Conditions Intersection Analysis Worksheets	Н
Buildout (Year 2035) With Project Conditions Intersection Analysis Worksheets	I
Traffic Signal Warrant Analysis	J
Percent Time Following LOS Analysis	K
Santiago Canyon Road Travel Time Runs and Vehicle Classification Counts	L
County of Orange Standard Plan No. 1107	М
Traffic Signal and Signing/Striping Cost Estimates	Ν

1.0 Introduction

A. Purpose of Report and Study Objectives

The purpose of this traffic impact study is to evaluate the proposed Saddle Crest residential development from a traffic circulation standpoint. The proposed development is located on the northeast side of Santiago Canyon Road north of Ridgeline Road and south of Modjeska Grade Road within the County of Orange.

Study objectives include: (1) documentation of Existing traffic conditions in the vicinity of the site; (2) documentation of Existing Plus Project traffic conditions; (3) evaluation of Interim (Year 2015) Without Project traffic conditions; (4) evaluation of Interim (Year 2015) With Project traffic conditions; (5) evaluation Buildout (Year 2035) Without project; (6) evaluation of Buildout (Year 2035) With Project traffic conditions; and (7) determination of on-site and off-site improvements and system management actions needed to achieve County of Orange level of service requirements.

The traffic study includes an evaluation of study area intersections and roadway segments of Santiago Canyon Road based upon the County's Growth Management TIM (Transportation Implementation Manual) modifications to the TIM analysis procedures for Santiago Canyon Road are proposed as part of this study.

B. Site Location and Study Area

Saddle Crest is located in unincorporated Orange County north of the junction of Live Oak Canyon Road with El Toro Road and east of Santiago Canyon Road. The cities of Lake Forest, Mission Viejo and Rancho Santa Margarita are located to the south; the Foothill Ranch and Portola Hills Planned Communities and the Whiting Ranch Wilderness Park and Limestone Canyon Regional Park are located to the west; the Cleveland National Forest is located to the east; and, the Silverado and Modjeska canyon areas and the Cleveland National Forest are located to the north.

The project is located on the north side of Santiago Canyon Road, south of Modjeska Grade Road and north of Ridgecrest Road, in the County of Orange. Exhibit A illustrates the site location and traffic analysis study area. The project proposes one (1) full access point onto Santiago Canyon Road, as shown in Exhibit B. The study area includes the following intersections:

North-South Street	East-West Street
Portola Parkway	Glenn Ranch Road SR-241 Toll Road Ramps
Santiago Canyon Road	Modjeska Grade Road Project Access Live Oak Canyon Road
Santiago Canyon Road/ El Toro Road	Glenn Ranch Road
Marguerite Parkway	El Toro Road
Portola Parkway/Santa Margarita Parkway	El Toro Road

None of the study area intersections are part of the 2009 Orange County Congestion Management Program (CMP). The only CMP highway in the vicinity of the project is El Toro Road located south of the SR-241 Toll Road. This project will not contribute a significant amount of traffic to this roadway based upon CMP criteria. The project generates less than the CMP threshold of 1,600 daily trips in close proximity to a CMP Highway System link.

C. Development Project Description

The 113.6 acre Saddle Crest project includes the development of 65 single family residential homes on lots which will have an average size of approximately 20,000 square feet. Vehicular access to the Saddle Crest community will be from Santiago Canyon Road. The project will be served by a single entry/exit feature.

D. History and Context

On January 28, 2003, the Orange County Board of Supervisors approved the project as it was proposed at that time. In addition to the 113.6-acre Saddle Crest project site, that project also included the 388.3-acre Saddle Crest North project site (which includes the Watson parcel) and the 83.6-acre Saddle Creek South project site.

Since that time, 304.7 acres of the Saddle Creek North project site were transferred (in December 2008) to The Conservation Fund (a non-profit entity whose purpose is land and water conservation). Additionally, the 83.6-acre Saddle Creek South project site was transferred (in April 2011) to the Orange County Transportation Authority for conservation purposes (under its freeway improvements mitigation program).

At this time, only the Saddle Crest project is being proposed (no project is currently being proposed for the Watson parcel).

THIS PAGE INTENTIONALLY LEFT BLANK

2.0 Methodology

Based upon County of Orange policy within the TIM, the methodology used to assess the operation of the signalized study area intersections is Intersection Capacity Utilization (ICU). To calculate the ICU, the volume of traffic using the intersection is compared with the capacity of the intersection. ICU is usually expressed as a ratio. This ratio represents that portion of the hour required to provide sufficient capacity to accommodate all intersection traffic if all approaches operate at capacity.

Pursuant to County of Orange Policy, all signalized intersections have been evaluated based upon the ICU Methodology. Caltrans had requested that the intersection of the County highways with state facilities be based upon the HCM (Highway Capacity Manual) Methodology. However, this was not done in this study, because it is in conflict with the policy of the County of Orange and the OCTA.

A. ICU Methodology

1. Intersection Capacity Utilization (ICU) methodology was used to analyze signalized study area intersections;

Saturation Flow Rate:

Saturation flow value of 1,700 vehicles per lane per hour for all lanes; no adjustments are used for protected movements with dedicated lanes (including both right and left turns). A volume adjustment of 0.85 was used for right turn movements where there existed a right turn or "defacto" right turn lane adjacent to the curb lane.¹

3. Clearance Internal and Cycle Time:

A clearance interval factor of 5% (0.05) is applied to the ICU calculations.¹ The cycle time is 100 seconds for ICU analysis purposes.

4. Level of Service Ranges¹:

<Table shown on following page>

¹ Source: Orange County GMP (Growth management Program) TIM (Transportation Implementation Manual)

LOS	CRITICAL VOLUME TO CAPACITY RATIO
А	0.00 - 0.60
В	0.61 - 0.70
С	0.71 - 0.80
D	0.81 - 0.90
E	0.91 - 1.00
F	>1.00

Peak-Periods:

Weekday peak-hour analysis periods are defined as follows:

7:00 to 9:00 AM 4:00 to 6:00 PM

6. Peak-Hour:

The highest one-hour period in both the AM and PM peak periods, as determined by four consecutive 15-minute count periods are used in the ICU calculations. Both AM and PM peak hours are studied.

7. Peak-Hour Data Consistency:

Variations in peak-hour volumes can affect LOS calculations because they vary from day-to-day. To minimize these variations, no counts are taken on Mondays, Fridays, holidays or weekends. The traffic count worksheets for this study are included in Appendix A.

8. Right Turn Movements:

If the distance from the edge of the outside through lane is at least 19 feet and parking is prohibited during the peak period, right turning vehicles may be assumed to utilize this as a right turn lane.¹ Otherwise, all right turn traffic is assigned to the through lane. If a right turn lane exists, right turn

-

¹ Source: Orange County GMP (Growth management Program) TIM (Transportation Implementation Manual)

activity is checked for conflicts with other critical movements. It is assumed that right turn movements are accommodated during non-conflicting left turn phases (e.g., northbound right turns during westbound left turn phase), as well as non-conflicting through flows (e.g., northbound right turn movements and north/south through flows). Right turn movements become critical when conflicting movements (e.g., northbound right turns, southbound left turns, and eastbound through flows) represent a sum of V/C ratios that are greater than the normal through/left turn critical movements.

B. HCM Methodology (Unsignalized Intersections)

Based upon County of Orange requirements, study area intersections that are stop sign controlled with stop control on the minor street only have been analyzed using the unsignalized intersection methodology of the Highway Capacity Manual (HCM 2000). For these intersections, the calculation of level of service is dependent on the occurrence of gaps occurring in the traffic flow of the main street. Using data collected describing the intersection configuration and traffic volumes at these locations, the level of service has been calculated. The level of service is determined based on the worst individual movement or movements sharing a single lane. The relationship between the level of service and delay is different than for signalized intersections.

The level of service is defined for the unsignalized intersection methodology² is as follows:

	Average Control Delay Per Vehicle (Seconds)	
LOS	Unsignalized	
А	0.00 - 10.00	
В	10.01 - 15.00	
С	15.01 - 25.00	
D	25.01 - 35.00	
Е	35.01 - 50.00	
F	>50.01	

² Source: HCM (Highway Capacity Manual, 2000)

C. Santiago Canyon Road Capacity Methodology

This section addresses the traffic analysis procedures for Santiago Canyon Road (SCR) as contained in the County of Orange Transportation Implementation Manual (TIM). The purpose of this is to provide the technical basis for updating the TIM as it pertains to Santiago Canyon Road. This methodology is currently required to be used for traffic impact studies pursuant to the County Growth Management program.

The TIM is intended to clarify the methodology used to determine the "Traffic Level of Service" for Santiago Canyon Road as related to the Growth Management (GM) Element of the County General Plan. Section "I" of the TIM addresses *TRAFFIC LEVEL OF SERVICE POLICIES*, where it specifies level of service (LOS) "D" throughout the County with the exception of Santiago Canyon Road, for which it states:

"LOS "C" shall be maintained on all uninterrupted links of three miles in length or more on Santiago Canyon Road until such time as uninterrupted segments (i.e. between major signalized intersections) are reduced to less than three miles."

The traffic performance measure used for highway planning and design applications in Orange County and virtually all other agencies within the County is the volume-to-capacity (V/C) ratio or ICU (Intersection Capacity Utilization) methodology. This methodology compares the volume to the capacity of a roadway segment or intersection and determines how much of this capacity is being used for both existing and future conditions.

This methodology has also been adopted by the OCTA (Orange County Transportation Authority) within their CMP (Congestion Management Program) procedures. The volume-to-capacity (V/C) ratio or ICU methodology is also used for

the CMP program. The volume-to-capacity ratio methodology is easy to understand since it simply compares the ratio of existing or future traffic to a roadway's capacity.

This methodology is utilized by the County of Orange for its signalized intersection analysis procedure, utilizing the ICU (Intersection Capacity Utilization) methodology and also its roadway segment analysis based upon ADT (average daily traffic). While it is possible that future demand could result in a V/C ratio greater than 1.0, it does provide useful information about future demand with respect to a roadway's capacity and number of lanes required. The volume to capacity ratio information is typically used for deriving LOS and is utilized by all thirty-four (34) cities within the County of Orange.

Roadway Capacity Derivation for Santiago Canyon Road

The HCM two-lane roadway analysis is based strictly on the ability to pass rather than the actual capacity of the roadway. For the most part, passing on Santiago Canyon Road is not possible; therefore, the roadway's physical capacity is more indicative of its operating conditions. The two-lane highway methodology in the HCM essentially addresses rural highways where the driving experience is heavily influenced by the ability to pass slower moving vehicles. Accordingly, a maximum volume for a given LOS is determined rather than the actual capacity. This volume is then related to the "Percent Time Spent Following" to establish the LOS. This distinction between maximum volume and capacity is of key importance in evaluating LOS for Santiago Canyon Road. The ability to pass on the two (2) lane segments of Santiago Canyon Road is not valid, since passing is not feasible at most locations. Furthermore, the HCM Methodology does not consider the design characteristics of two-lane highways that include right/left intersection turn lanes, two-way left-turn lanes, wide cross-sections, and a limited amount of slow moving vehicles (i.e. trucks and RVs), which exist on Santiago Canyon Road.

RK has made an evaluation of existing conditions, along Santiago Canyon Road, based upon the "Percent Time Spent Following" methodology and has compared it to actual operating conditions along Santiago Canyon Road. This analysis indicates that the segments along Santiago Canyon Road are currently operating at LOS D which is not reflective of current conditions. This evaluation is included in Section 6.0 page 6-3. The HCM methodology does not reflect actual operating conditions of Santiago Canyon Road.

The County of Orange utilizes a roadway lane capacity of 1,700 vehicles per hour for each direction of travel per lane. This is similar to what is stated in the Highway Capacity Manual (HCM), which indicates a one-way capacity value of 1,700 vehicles per hour for uninterrupted sections of two lane highways³. The Volume-to-Capacity methodology has been utilized in Orange County by several agencies for many years, and more closely represents operating conditions along Santiago Canyon Road. The derivation of the highway's segment Volume-to-Capacity Ratio relationship to Level of Service (LOS) comes directly from the County's Growth Management Transportation Implementation Manual. According to Page 32, Table IV-2B of the manual, a matrix has been established to relate an Arterial Highway's Level of Service to various roadway segment service volumes. The maximum volume-to-Capacity Ratio for a Two-Lane Highway at LOS C is 0.80, based upon Table IV-2B. This represents the same Volume-to-Capacity Ratio that the County uses for other Highway capacity analysis (i.e. intersections and ADT volumes on roadway segments). The maximum directional lane capacity for a two-lane roadway is 1,700 vehicles per hour, and a lane volume of 1,360 vehicles per hour, with is 0.80 times the maximum lane capacity of 1,700 vehicles per hour, which represents LOS C. These lane capacity guidelines shall be used to ensure that the level of service "C" capacity of 1,360 vehicles per lane will not be exceeded.

The County of Orange and various cities have also adopted volume to capacity ratios related to level of service (LOS) that are consistent throughout the County of

-

³ Source: HCM (Highway Capacity Manual, 2000)

Orange. Based upon the historical lane capacity, the following table has been developed to determine various peak hour directional and average daily trip capacities for Santiago Canyon Road and other similar highways.

	Max	Maximum Peak Hour		ADT
LOS⁴	V/C Ratio⁴	Directional Volume⁵ (vph)	2-lane Undivided ⁶	2-lane w/Left-Turn Lanes ⁶
А	0.60	1,020	7,500	11,250
В	0.70	1,190	8,800	13,200
C	0.80	1,360	10,000	15,000
D	0.90	1,530	11,300	16,950
E	1.00	1,700	12,500	18,750
F	1.00 +	*	*	*

These factors are very similar to other cities in Orange County that have roadways similar to Santiago Canyon Road. These include Laguna Canyon Road, Ortega Highway, Harvard Avenue and other two lane highways. For example, peak directional lane capacity for roadway segments for various cities is as follows:

- City of Irvine = 1,600 vph/lane for LOS "E" for Controlled Intersection Spacing 1 mile or less <u>and</u> 2,000 vph/lane for LOS "E" when controlled intersections are greater than 1 mile spacing
- Caltrans/Ortega Highway Study = 1,785 vph/lane for LOS "E"
- County of Orange/Laguna Canyon Road (SR-133) SR-73 to El Toro Road = 1,700 vph/lane for LOS "E".

These are all very similar in capacity to the County's 1,700 vph per lane for a two-lane highway capacity as shown above. County policy for Santiago Canyon Road requires a higher level of service than other roadways throughout the County. No change in this policy is suggested, therefore LOS "C" is retained as the level of service standard for Santiago Canyon Road intersections and roadway segments. As part of this project, it is proposed to analyze Santiago Canyon Road similar to other

⁴ Source: Orange County GMP (Growth management Program) TIM (Transportation Implementation Manual)

⁵ Calculated based upon a lane capacity of 1,700 vph and the max. V/C ratios

⁶ Orange County Highway Design Manual. Two-lane with left-turn lane capacity estimated based upon an increase in capacity 50%, similar to a four lane highway with a median.

jurisdictions throughout Orange County. The maximum peak directional volume to maintain LOS "C" along Santiago Canyon Road when traffic signal spacing is more than three miles apart for two lane roadways (one in each direction) and four lane roadways (two in each direction) is as follows:

- Two lane roadway = 1,360 vph
- Four lane roadway = 2,720 vph

D. Acceptable Level of Service and Significant Impact Criteria

The acceptable Level of Service (LOS) for intersections within the County of Orange is D or better for intersections. Therefore, any intersections operating at a LOS "E" or "F" will be considered deficient. For this study, the ICU (Intersection Capacity Utilization) method has been used for signalized intersections and the HCM method has been used for unsignalized intersections along Santiago Canyon Road. The acceptable level of service for the uninterrupted segments of Santiago Canyon Road identified in Orange County TIM is LOS "C". This will be determined by the volume capacity level of service methodology which has been discussed in Section 2.0 of this report.

A project's significant impact to intersections is determined if the project causes an intersection's level of service to degrade from LOS "D" or better to "E" or "F" or if the project causes a change in volume/capacity ratio (ICU) greater than 0.01, if the intersection is operating at LOS "E" or "F".

For Santiago Canyon Road, a significant impact is considered if the project causes the LOS to degrade from "C" or better to "D", "E" or "F". A significant impact is also considered if the project causes the volume capacity ratio to increase by more than 0.01, if the roadway segment is operating at LOS "D", "E" or "F".

3.0 Area Conditions

A. Study Area

The study area includes the following intersections as included in the approved scope of work (Appendix B):

North-South Street	East-West Street	
Portola Parkway	Glenn Ranch Road SR-241 Toll Road Ramps	
Santiago Canyon Road	Modjeska Grade Road Project Access Live Oak Canyon Road	
El Toro Road	Glenn Ranch Road	
Marguerite Parkway	El Toro Road	
Portola Parkway/Santa Margarita Parkway	El Toro Road	

B. Existing Traffic Controls and Intersection Geometrics

Exhibit C identifies the existing roadway conditions for the study area roadways. The number of through traffic lanes for existing roadways and the existing intersection controls are identified.

C. Existing Traffic Volumes

Existing AM and PM peak hour traffic volumes for the study area intersections are shown on Exhibit D-1. These volumes are based upon manual AM and PM peak hour turning movement counts compiled for RK in May 2011. The traffic count worksheets are included in Appendix A.

Existing average daily traffic (ADT) volumes on arterial highways in the study area are also shown on Exhibit D-1. ADT volumes were counted by machines compiled for RK in May 2011. The ADT worksheets are included in Appendix A.

Existing AM and PM peak hour roadway segment volumes along Santiago Canyon Road are shown in Exhibit D-2. These volumes were calculated based on the conservation of flow from existing peak hour turning movement volumes at the adjacent intersections. These represent the peak hour segment volume directly adjacent to the intersections where the peak hour intersection analysis (ICU) was performed. Also, this was the only location where peak hour segment volumes where available for the Interim (Year 2015) and Buildout Year 2035 traffic projections. For consistency purposes, the same intersections were selected for Existing and Existing Plus Project conditions to establish roadway segment volumes.

D. Existing Level of Service

Existing intersection level of service calculations for intersections are shown in Table 1 and are based upon manual AM and PM peak hour turning movement counts compiled for RK in May 2011. The Santiago Canyon Road segment analysis is included in Section 6.0.

For existing traffic conditions, all study area intersections are currently operating at acceptable levels of service during peak hours. Also, all Santiago Canyon Road segments are operating at LOS A based upon the proposed methodology for the amended TIM (Transportation Implementation Manual). Based upon the existing TIM methodology, some segments of Santiago Canyon Road are operating at LOS D which does not reflect actual operating conditions.

The ICU and HCM calculation worksheets for existing conditions are provided in Appendix C.

E. OCTA Master Plan of Arterial Highways

Exhibit E shows the Orange County Transportation Authorities (OCTA) Master Plan for Arterial Highways and Roadway Cross Sections. Based on the Master Plan, Santiago Canyon Road is planned as a four lane divided primary highway. For the most part, today, it is a two lane highway with left and right turn lanes at some intersections.

THIS PAGE INTENTIONALLY LEFT BLANK

4.0 Projected Traffic

A. Project Traffic Conditions

1. Trip Generation

Trip generation represents the amount of traffic that is attracted and produced by a development. The traffic generation for the project is based upon the specific land uses that have been planned for the development. The proposed Saddle Crest development will consist of 65 single-family detached dwelling units, which will have an average size of approximately 20,000 square feet. A site plan is shown in Exhibit B.

Trip generation rates for the proposed development are shown in Table 2. These trip rates are based upon Orange County standards and were previously used in the Foothill/Trabuco Specific Plan Traffic Study. They are derived from local Orange County data and the *Institute of Transportation Engineers (ITE) Trip Generation* documents. This publication provides a comprehensive evaluation of trip generation rates for a variety of land uses.

Both daily and peak-hour trip generation for the proposed development are shown in Table 3. The proposed development is projected to generate approximately 780 gross trip-ends per day, with 58 gross vehicles per hour during the AM peak hour and 78 gross vehicles per hour during the PM peak hour. All trips generated by the proposed development will enter/exit the project site via one (1) full access point off Santiago Canyon Road.

The proposed Saddle Crest development will be developed in a vacant location which does not currently generate traffic. No trip credit has been taken for the existing land use.

2. Trip Distribution and Assignment

Trip distribution represents the directional orientation of traffic to and from the project site. Trip distribution is heavily influenced by the geographical location of the site, the location of retail, business, and recreational opportunities, and the proximity to the regional freeway system. The directional orientation of traffic was determined by evaluating existing and proposed land uses, and highways within the community.

Trip distribution patterns for this study have been based upon near-term conditions and those highway facilities that are either in place or will be contemplated over the next few years. The outbound and inbound trip distribution pattern for the project is graphically depicted on Exhibit F. These trip distribution patterns have been pre-approved by the County of Orange's staff prior to the completion of this study.

The assignment of traffic from the site to the adjoining roadway system has been based upon the site's trip generation, trip distribution, and proposed arterial highway and local street systems that would be in place by the time of initial occupancy of the site.

3. Modal Split

Modal split denotes the proportion of traffic generated by a project that would use any of the transportation modes, namely buses, cars, bicycles, motorcycles, trains, carpools, etc. The traffic reducing potential of public transit and other modes is significant. However, the traffic projections in this study are "conservative" in that public transit and alternative transportation may be able to reduce the traffic volumes. Thus no modal split reduction is applied to the projections. With the implementation of transit service and provision of alternative transportation services and incentives, the automobile traffic demand can be reduced significantly.

The OCTA existing and proposed bikeway facilities are available in Exhibit E-2. OCTA categorizes commuter bikeways into three Classifications;

- Class I off-street paved bike paths
- Class II on-street striped and signed bicycle lanes
- Class III on-street shared lane bicycle routes

There are currently northbound and southbound Class II bikeways along Santiago Canyon Road adjacent to the project site. Future plans to improve the bikeways along Santiago Canyon Road to Class I are proposed under the OCTA Commuter Bikeways Strategic Plan. The plan encourages bicycle commuting as not only a way to reduce vehicle congestion and exhaust emissions, but also to improve the quality of life for residents and help build a more sustainable environment.

As aforementioned, the traffic projections in this study are "conservative" and no modal split reduction is applied to the projections in order to establish a worst-case analysis. With the implementation of transit service and provision of alternative transportation ideas and incentives, the automobile traffic demand can be reduced.

4. Project Peak Hour Traffic Volumes

Project AM and PM peak hour intersection turning movement volumes and average daily traffic are shown on Exhibit G.

5. Existing Plus Project Peak Hour Traffic Volumes

Existing Plus Project AM and PM peak hour intersection turning movement volumes and average daily traffic were determined by combining the existing traffic volumes obtained in May 2011 with the project traffic volumes. The Existing Plus Project AM and PM peak hour intersection turning movement volumes and average daily traffic are shown on Exhibit H-1, and peak hour roadway segment volumes along Santiago Canyon Road are show in Exhibit H-2.

B. Background Traffic

1. Method of Projection

RK has utilized future traffic volumes obtained from Austin Foust and Associates (AFA), to project future traffic conditions in both the Interim (Year 2015) and for Buildout (Year 2035) conditions. AFA has developed local area models which are consistent with the current OCTAM 3.3 model developed for use by the OCTA (Orange County Transportation Authority). The AFA traffic model has combined existing traffic volumes with an area wide growth rate and cumulative projects planned in the vicinity. The Interim (Year 2015) and Buildout (Year 2035) model account for future planned roadway improvements to the area wide circulation system that will impact traffic flow. These models also account for future interim and buildout of land uses in the study area. Everything that RK has analyzed is consistent with the AFA Modeling data.

2. Traffic Forecast Methodology

As stated in the AFA Saddle Crest Traffic Impact Study Traffic Forecast, the traffic forecast volumes for interim year and buildout without the project are based on various sources including previous analysis carried out for Santiago Canyon Road (County of Orange Transportation Implementation Manual, Draft Santiago Canyon Road Analysis, Austin-Foust Associates, Inc., April 2009), the current OCTAM 3.3, and the LFTAM, which includes the Vacant Land Opportunities Study Area development as well as the recently approved Lake Forest Sports Park at Glass Creek. The East Orange approved development and buildout of the Foothill/Trabuco Specific Plan (including the project site) are also assumed in the forecasts. The AFA traffic forecast data for Interim (Year 2015) and Buildout (Year 2035) without the project is included in Appendix D.

This modeling data is conservative, since several of the properties included in the Foothill/Trabuco Specific Plan - FTSP (i.e. Saddle Creek South, O'Neill Oaks, Ferber Ranch and the Hafen Estate) have been sold for open space to the OCTA (Orange County Transportation Authority). A summary of those properties that have been eliminated is as follows:

FTSP Name:	<u>DUs</u>
 Bridlewood 	439
• Bach	37
• Porter	12
• Edgar (4-S Ranch, North)	78
 Live Oak Limited 	21
• Edgar (4-S Ranch, South)	22
• Ferber	72
• Lucarelli	36
Total	717

This has reduced the number of potential dwelling units in the Foothill/Trabuco Specific Plan area by 717 dwelling units or 26% of the approved dwelling units. The OCTAM uses regional countywide demographic data projections (i.e., OCP-2006) to produce traffic forecasts on the local regional highway system. The LFTAM was developed according to the Orange County sub-area traffic modeling guidelines that have been adopted by the Orange County Transportation Authority (OCTA), and the OCTA has certified the traffic model as being consistent with the OCTAM regional model. The interim year and buildout model were calibrated by using the Year 2011 traffic counts used for this study.

Forecast data from the AFA modeling that was presented for the south end section of Santiago Canyon Road in the AFA Saddle Crest Traffic Impact Study Traffic Forecast Data Analysis is expanded here to include volume data for 2011 existing counts, short-term (year 2015) and buildout according to OCP-2006 projections in the OCTAM 3.3 model. This data and the OCTAM were mainly used to arrive at the volumes on

Santiago Canyon Road north of Live Oak Canyon Road, and the LFTAM was used for the remaining areas.

To determine Interim (Year 2015) and Buildout (Year 2035) traffic forecasts with the project, the project volumes calculated in section 4.0 were added to the forecast volumes. It should be noted that this was used to be sure that the projects' traffic was adequately accounted for in the traffic analysis. Again, this is a conservative approach, since all of the projects' trips would already be included in the Foothill/Trabuco Specific Plan land uses for the project site.

C. Interim (Year 2015) Without Project Traffic Volumes

In order to assess Interim (Year 2015) Without Project traffic conditions, the AFA 2015 traffic model volumes were used for each study area intersection. Interim (Year 2015) Without Project AM and PM peak hour intersection turning movement volumes and average daily traffic are shown on Exhibit I-1, and peak hour roadway segment volumes along Santiago Canyon Road are shown on Exhibit I-2.

D. Interim (Year 2015) With Project Traffic Volumes

Interim (Year 2015) With Project traffic conditions were assessed by adding the project traffic volumes to the AFA 2015 traffic model volumes for each study area intersection. Interim (Year 2015) With Project AM and PM peak hour intersection turning movement volumes and average daily traffic are shown on Exhibit J-1, and peak hour roadway segment volumes along Santiago Canyon Road are shown on Exhibit J-2.

E. Buildout (Year 2035) Without Project Traffic Volumes

In order to assess Buildout (Year 2035) Without Project traffic conditions, the AFA buildout traffic model volumes were used for each study area intersection. Buildout (Year 2035) Without Project AM and PM peak hour intersection turning movement volumes and average daily traffic are shown on Exhibit K-1, and peak hour roadway segment volumes along Santiago Canyon Road are shown on Exhibit K-2.

F. Buildout (Year 2035) With Project Traffic Volumes

Buildout (Year 2035) With Project traffic conditions were assessed by adding the project traffic volumes to the AFA buildout traffic model volumes for each study area intersection. Buildout (Year 2035) With Project AM and PM peak hour intersection turning movement volumes and average daily traffic are shown on Exhibit L-1, and peak hour roadway segment volumes along Santiago Canyon Road are shown on Exhibit L-2.

THIS PAGE INTENTIONALLY LEFT BLANK

5.0 Traffic Analysis

A. Capacity and Level of Service Improvement Analysis

1. Level of Service for Existing Conditions

Intersection levels of service for the existing network, as counted in May 2011, are shown in Table 1. As shown in Table 1, ICU and HCM calculations are based on the existing intersection geometrics.

For existing traffic conditions, all study area intersections are projected to operate at acceptable levels of service during peak hours. Also, Santiago Canyon Road Segments are operating better than LOS C based upon the recommended Volume/Capacity analysis procedures included in the amended TIM (Transportation Implementation Manual. Based upon the existing TIM methodology, some segments would be operating at LOS D which does not reflect actual operating conditions.

ICU and HCM calculation worksheets for existing traffic conditions are provided in Appendix C.

2. Level of Service for Existing Plus Project Conditions

Intersection levels of service for the existing network with the proposed project traffic volumes are shown in Table 4. As shown in Table 4, ICU and HCM calculations are based on the existing intersection geometrics.

For existing plus project traffic conditions, all study area intersections are projected to operate at acceptable levels of service during peak hours.

ICU and HCM calculation worksheets for existing plus project conditions are provided in Appendix E.

3. Level of Service for Interim (Year 2015) Without Project

Intersection levels of service for the existing network with background growth in the year 2015 are shown in Table 5. As shown in Table 5, ICU and HCM calculations are based on the existing intersection geometrics.

For Project Interim (Year 2015) Without Project traffic conditions, all study area intersections are projected to operate at acceptable levels of service during peak hours except for the following intersection:

North-South Street	East-West Street	LOS	
North-South Street		AM	PM
Portola Pkwy. / Santa Margarita Pkwy.	El Toro Road	В	F

ICU and HCM calculation worksheets for Interim (Year 2015) Without Project conditions are provided in Appendix F.

4. Level of Service at Interim (Year 2015) With Project

Intersection Levels of Service for the existing network with background growth and the proposed project are shown in Table 6. As shown in Table 6, ICU and HCM calculations are based on the existing intersection geometrics.

For Interim (Year 2015) With Project traffic conditions, all study area intersections are projected to operate at acceptable levels of service during peak hours except for the following intersection:

North-South Street	East-West Street	LOS	
North-South Street		AM	PM
Portola Pkwy. / Santa Margarita Pkwy.	El Toro Road	В	F

ICU and HCM calculation worksheets for Interim (Year 2015) With Project conditions are provided in Appendix G.

5. Level of Service at Buildout (Year 2035) Without Project

Intersection levels of service for the existing network with background growth in the Buildout (Year 2035) are shown in Table 7. As shown in Table 7, ICU and HCM calculations are based on the existing intersection geometrics.

For Buildout (Year 2035) Without Project traffic conditions, all study area intersections are projected to operate at acceptable levels of service during peak hours except for the following intersections:

<Table shown on following page>

North-South Street	East-West Street	LOS	
North-Journ Street		AM	PM
Santiago Canyon Road	Live Oak Canyon Road	F	F
Santiago Canyon Road / El Toro Road	Glenn Ranch Road	С	F
Portola Pkwy. / Santa Margarita Pkwy.	El Toro Road	E	F

ICU and HCM calculation worksheets for Buildout (Year 2035) conditions are provided in Appendix H.

6. Level of Service at Buildout (Year 2035) With Project

Intersection Levels of Service for the existing network with background growth for Buildout (Year 2035) and the proposed project are shown in Table 8. As shown in Table 8, ICU and HCM calculations are based on the existing intersection geometrics and the intersection geometrics necessary to mitigate the impacts.

For Buildout (Year 2035) With Project traffic conditions, all study area intersections are projected to operate at acceptable levels of service during peak hours except for the following intersections:

North-South Street	East-West Street	LOS	
North-South Street		AM	PM
Santiago Canyon Road	Live Oak Canyon Road	F	F
Santiago Canyon Road / El Toro Road	Glenn Ranch Road	D	F
Portola Pkwy. / Santa Margarita Pkwy.	El Toro Road	E	F

It should be noted that these are the same intersections that are expected to be deficient without the project. The project is not required to provide any mitigation for the intersection of Portola Parkway / Santa Margarita Parkway at El Toro Road, because it does not have a significant impact to this intersection (see Section 7). ICU and HCM calculation worksheets for Project Buildout (Year 2035) With Project conditions are provided in Appendix I.

7. Significant Impacts

Based on the County's criteria for significance, the project contributes to an existing projected significant impact for Buildout (Year 2035) conditions at the following intersections:

North-South Street	East-West Street
Santiago Canyon Road	Live Oak Canyon Road
Santiago Canyon Road / El Toro Road	Glenn Ranch Road

A project's significant impact to intersections is determined if the project causes an intersection's level of service to degrade from LOS "D" or better to LOS "E" or "F" or if the project causes a change in volume/capacity ratio (ICU) greater than 0.01, if the intersection is operating at LOS "E" or "F". The project does not have a significant impact at the intersection of Portola Parkway / Santa Margarita Parkway and El Toro Road because it does not meet these criteria.

A list of appropriate improvement options to restore the level of service at the intersection back to acceptable levels of service is listed in Table 11.

8. Traffic Signal Warrant Analysis

Traffic signal warrants have been analyzed at the following study area intersection:

North-South Street	East-West Street	Warranted
	Modjeska Grade Road	NO
Santiago Canyon Road	Project Access	NO
	Live Oak Canyon Road	YES

Traffic signal warrants have been performed at the above study area intersection for Existing, Interim, and Buildout Without and With Project traffic conditions. The intersection of Santiago Canyon Road and Live Oak Canyon Road currently warrants a traffic signal based upon existing PM peak hour traffic signal warrant criteria, and is projected to meet warrant criteria in the AM peak hour for Interim (Year 2015) Without Project conditions. All subsequent conditions will continue to meet traffic signal warrant criteria for this intersection. The traffic signal warrant worksheets are included in Appendix J.

It should be noted that for purposes of the traffic signal warrant analyses, Santiago Canyon Road has been classified as rural conditions due to the higher speeds on Santiago Canyon Road and the low population density of the area. As stated in the Caltrans Warrant Criteria, a roadway is considered a rural highway, if the existing posted speed limit or critical speed is greater than 40 mph. This is the case at the intersection of Santiago Canyon Road at Live Oak Road.

6.0 Santiago Canyon Road Analysis

A. Santiago Canyon Road Analysis Evaluation

According to GMP (Growth Management Program) TIM (Transportation Implementation Manual), a special traffic analysis is needed for those projects potentially impacting Santiago Canyon Road. According to the existing TIM, projects that increase existing (at the time the project is proposed), critical movements (the higher of the two directional movements) by 1% or more during the AM or PM peak hour on Santiago Canyon Road are required to perform a level of service (LOS) analysis using the HCM (Highway Capacity Manual) methodology. The analysis shall address project plus existing, project plus interim year projections as determined by the County, in addition to buildout analysis required by General Plan consistency evaluation.

The methodology used to analyze Santiago Canyon Road has been presented in Section 2.0 of this report. Based upon the discussion of appropriate methodologies included in Section 2.0, the volume/capacity method more realistically represents operating conditions on Santiago Canyon Road than the HCM method in this study. The TIM is being proposed to be modified to reflect the volume to capacity methodology for Santiago Canyon Road.

The Saddle Crest project will increase peak hour directional flows on Santiago Canyon Road by over one (1) percent, therefore, the traffic impacts need to be evaluated. As a result of this, the TIM requires the traffic impacts of the project be evaluated for this facility. The TIM also addresses traffic level of service policy for both intersections and roadway segments along Santiago Canyon Road. It specifies, "LOS D as acceptable throughout the County for intersections with the exception of roadway segments on Santiago Canyon Road for which it states, LOS "C" shall be maintained on all uninterrupted links of three miles in length or more on Santiago Canyon Road until such time as uninterrupted segments (i.e. between major signalized intersections) are reduced to less than three miles."

Santiago Canyon Road in the County is an existing high speed two-lane roadway with limited access and no traffic signals throughout its length. It is classified as a primary arterial on the MPAH (Master Plan of Arterial Highways), which would ultimately have a cross-section including two (2) travel lanes in each direction separated by a median. The TIM currently specifies that the Highway Capacity Manual (HCM) is generally used as a technical reference for capacity analysis, which is the source required by the County of Orange TIM.

The section of the HCM manual on two-lane rural highway discusses LOS, not in terms of capacity, but in terms of "percent time spent following" (PTSF). The physical capability of the highway is not used to determine LOS. This is a departure from other roadway level of service analysis procedures addressed in the HCM, which use the actual capacity of the roadway or intersections to determine LOS. The two-lane highway methodology in the HCM essentially addresses rural highways where the driving experience is heavily influenced by the ability to pass slower moving vehicles. Accordingly, a maximum volume for a given LOS is determined rather than the actual capacity. This volume is then related to the "Percent Time Spent Following" to establish the LOS. This distinction between maximum volume and capacity is key importance in the evaluating LOS for Santiago Canyon Road. The ability to pass on the two (2) lane segments of Santiago Road is not valid, since passing is not feasible at most locations.

In the case of Santiago Canyon Road, two opposing flows are separated by double-stripe centerlines, which excludes passing throughout most its entire length. Consequently, the traffic carrying ability of Santiago Canyon Road is not realistically determined by the HCM two-lane methodology, since passing is not possible. Furthermore, the HCM methodology does not account for provisions of left/right turn lanes at intersections, two-way left turn lanes, wide cross-sections, and limited amount of slow moving vehicles (i.e. trucks, RVs), which exist on Santiago Canyon Road. Since Santiago Canyon Road does not fit the basic characteristics of two-lane rural roadway for which the passing methodology is intended as stated in the HCM, a more realistic method practiced by several Cities in the County and

one that follows the County's adopted ICU (volume capacity ratio) methodology that is used for other roadways is more appropriate. As stated in Section 2.0, a more appropriate method of evaluating Santiago Canyon Road is based upon the volume capacity ratio of the facility. The TIM methodology is proposed to be amended with respect to the Santiago Canyon Road analysis.

An evaluation of Santiago Canyon Road based upon the HCM "percentage time spent following" methodology yields unsatisfactory operating conditions (worse than LOS = C) and LOS for existing and future conditions. An evaluation of existing conditions using the HCM "percent time spent following" methodology is included in Appendix K. It does not represent actual field conditions along Santiago Canyon Road. In actuality, this is not the case. RK has analyzed the field conditions by actually comparing travel time runs for Santiago Canyon Road between Live Oak Canyon Road and Modjeska Grade Road near the project site. Although the HCM procedures indicate that this segment is operating at poor conditions, that has not been determined based upon actual travel time runs in the area.

A summary of the travel time runs prepared by RK is shown in Appendix L. Five (5) travel runs in each direction were conducted during the AM and PM peak hours at the segment of Santiago Canyon Road between Live Oak Canyon Road and Modjeska Grade Road. As can be seen for current conditions, the average travel speeds within this segment of uninterrupted roadway segments is 52.4 miles per hour during the AM peak hour and 51.0 miles per hour during the PM peak hour. Based upon criteria included in the HCM would indicate that peak operating conditions are good and an excellent level of service is currently provided. Little if no congestion or obstruction of flow occurs with this average travel speed. As shown in Appendix K, utilizing the "percent time spent following" methodology included in the HCM, this would show a much poorer condition, making travel speeds considerably less. As a result of actual operating conditions on Santiago Canyon Road, the volume capacity methodology is suggested in Section 2.0. This method relates closer to the intersection capacity analysis currently adopted by the

County of Orange for the evaluation of signalized intersections. This method has yielded more realistic results, relating better to actual reality in the field.

B. Santiago Canyon Road Level of Service Analysis

A level of service analysis has been performed based upon the methodology and criteria contained in Section 2.0 of this report. Based upon the volume to capacity ratio in relationship to the actual capacity, the directional lane capacity of Santiago Canyon Road. This has been evaluated for the following conditions:

- Existing
- Existing Plus Project
- Interim (Year 2015) Without Project
- Interim (Year 2015) With Project
- Buildout (Year 2035) With Project
- Buildout (Year 2035) Without Project

As stated, the methodology is consistent with the evaluation procedures included in Section 2.0. The results of this are summarized in Table 10. As shown in Table 10, for existing conditions, Santiago Canyon Road is operating at Level of Service "A" for both northbound and southbound conditions during both the AM and PM peak hour. For existing plus project conditions, Santiago Canyon Road is operating at level of service "A" for both the northbound and southbound directions for both AM and PM peak hour conditions.

For interim (Year 2015) conditions without and with the project, Santiago Canyon Road would operate at level of service "A" in both the northbound and southbound direction during both the AM and PM peak hour.

For County buildout conditions (year 2035), without and with the project, Santiago Canyon Road would operate at level of service "A" or better at both the northbound and southbound direction for both AM and PM conditions.

Based upon this evaluation, Santiago Canyon Road would be operating within the specified level of service C as stipulated by the Transportation Implementation Manual, which is part of Growth Management Program for Orange County. This analysis has shown that the proposed project would not adversely affect the level of service along Santiago Canyon Road and the roadway itself would be operating at acceptable levels of service based upon the Santiago Canyon Road evaluation methodology, which reflects actual, not theoretical, operating conditions which are not appropriate for Santiago Canyon Road.

THIS PAGE INTENTIONALLY LEFT BLANK

7.0 Site Access and On-Site Circulation

A. Site Access

The Saddle Crest Project Site will be served by one (1) full access point onto Santiago Canyon Road. As shown in the site plan on Exhibit B, a curb to curb distance of 50 feet is provided for this access point. A westbound left turn lane and a westbound right turn lane should be provided for traffic exiting the site.

A northbound right turn pocket and a southbound left turn pocket are proposed on Santiago Canyon Road at the project access point. This will provide adequate access to the project from a traffic operations and safety standpoint.

The proposed access is located 1,100 feet from the Mill's property driveway to the west of the project. This distance is sufficient to provide adequate spacing for a right-turn deceleration lane into that project without impacting the project's entry. The location of the Saddle Crest entry/exit street is adequate from a spacing standpoint.

B. On-Site Circulation

Access to the project site will be via Santiago Canyon Road at Project Access, south of Modjeska Grade Road. The entry/exit passage feature is located a minimum of 100 feet from the curb line of Santiago Canyon Road. This distance will more than exceed the Orange County Standard Plan No. 1107 (Appendix M) which requires 100 feet minimum spacing from the entry/exit passage feature to the curb face of the adjacent street. Sixty-five single family dwelling units will be served via the restricted project access road.

Sight distance at the project intersection with Santiago Canyon Road has been reviewed and is adequate with a minor trimming of existing landscaping which encroaches into the public right-of-way on the south side of Santiago Canyon Road. The horizontal sight distance analysis, per the County's Plan No. 1107, is included in Exhibit M. Hunsaker & Associates Irvine, Inc. has prepared a vertical sight line analysis at the project street and Santiago Canyon Road. This analysis is shown in Exhibit N and shows that the vertical sight distance is adequate.

C. Gateway Queuing Analysis

The Orange County Standard Plan No. 1107 has been analyzed and compared to the proposed project's site plan with regards to gated entryways. According to Standard Plan No. 1107, entry gates shall be set back from the near curb line of any public street to provide a minimum 100 feet of storage for entering vehicles to stack without interfering with through traffic. An estimated worst case total length of the queue would be 65 feet during peak hours. The proposed gate is located a minimum of 100 feet from Santiago Canyon Road. Therefore, the gateway (entry/exit passage feature) location is adequate to allow for vehicles to queue without stacking onto Santiago Canyon Road.

8.0 Findings and Recommendations

A. Intersection Analysis Summary

A summary of the level of service analysis for each condition is included in Table 9.

For existing and existing plus project traffic conditions, all study area intersections are currently operating at acceptable levels of service.

The proposed development is projected to generate approximately 780 trip-ends per day, with 58 vehicles per hour during the AM peak hour and 78 vehicles per hour during the PM peak hour. No trip credit has been taken for the existing land use.

For Interim (Year 2015) Without Project traffic conditions, all study area intersections are projected to operate at acceptable levels of service during peak hours except for the following intersections:

North-South Street	East-West Street	LOS	
North-south street		AM	PM
Portola Pkwy. / Santa Margarita Pkwy.	El Toro Road	В	F

For Interim (Year 2015) With Project traffic conditions, all study area intersections are projected to operate at acceptable levels of service during peak hours except for the following intersections:

North-South Street	East-West Street	LOS	
North-south Street		AM	PM
Portola Pkwy. / Santa Margarita Pkwy.	El Toro Road	В	F

However, the project does not have a significant impact on this intersection, therefore, no project improvements are necessary.

For Buildout (Year 2035) Without Project traffic conditions, all study area intersections are projected to operate at acceptable levels of service during peak hours except for the following intersections:

North-South Street East-West Street	LOS		
North-South Street	East-West Street	AM	PM
Santiago Canyon Road	Live Oak Canyon Road	F	F
Santiago Canyon Road / El Toro Road	Glenn Ranch Road	C	F
Portola Pkwy. / Santa Margarita Pkwy.	El Toro Road	E	F

For Buildout (Year 2035) With Project traffic conditions, all study area intersections are projected to operate at acceptable levels of service during peak hours except for the following intersections:

North-South Street	East-West Street	LOS	
North-Journ Street	Last-West Street	AM	PM
Santiago Canyon Road	Live Oak Canyon Road	F	F
Santiago Canyon Road / El Toro Road	Glenn Ranch Road	D	F
Portola Pkwy. / Santa Margarita Pkwy.	El Toro Road	E	F

Based on the County's criteria for significance, the project contributes to an existing projected significant impact for Buildout (Year 2035) conditions at the intersections of Santiago Canyon Road at Live Oak Canyon Road and Santiago Canyon Road/El Toro Road at Glenn Ranch Road. However, a list of feasible mitigation measures needed to restore the level of service at the intersection back to acceptable levels is listed in Table 11.

The internal circulation provided on the Site Plan is adequate to meet the County of Orange standards if the recommendations included in this report are implemented.

B. Santiago Canyon Road Analysis

The methodology used for analyzing level of service on Santiago Canyon Road is described in Section 2.0 based upon the proposed TIM amendment using the Volume/Capacity criteria and the results are shown in Table 10. All study segments along Santiago Canyon Road are projected to operate at a LOS of A for Interim (Year 2015) and Buildout (Year 2035) without and with project conditions. Based upon the existing TIM methodology, some segments of Santiago Canyon Road are operating at LOS D which does not reflect actual operating conditions.

C. Proposed Mitigation Measures

A summary of the roadway improvements that are necessary to meet level of service standards for Buildout (Year 2035) without and with Project conditions are summarized in Table 11.

The proposed mitigation measures for Buildout (Year 2035) With Project conditions are graphically summarized on Exhibit M.

D. Related Plans and Programs

The following are plans or programs which affect the study area circulation system.

<u>The County of Orange General Plan</u>: The Transportation Element contains three components: Circulation Plan, Bikeway Plan, and Scenic Highway Plan. Each

component identifies transportation goals, objectives, policies, and implementation programs for transportation within the unincorporated area of the County.

Growth Management Element: The purpose of the Growth Management Element (as adopted by the board of Supervisors in October 1993) is "to mandate that growth and development be based upon the County's ability to provide an adequate circulation system" as well as other support services and facilities. The implementation Manual (Reference 6 in Chapter 1.0) describes the procedures to evaluate traffic impacts.

Foothill/Trabuco Specific Plan: The circulation Plan for the Foothill/Trabuco Specific Plan (F/TSP) identifies improvements that are necessary to support the level of development permitted by the Land Use Plan. The Circulation Component outlines requirements for safety improvements, monitoring and road fee programs. The F/TSP also includes a phasing component, which specifies that development within the F/TSP areas be consistent with the Growth Management Plan (GMP) Element and Traffic Level of Service Policy.

E. Road Fee Programs

In accordance with the County's General Plan and the F/TSP, the project is subject to three established Road Fee Programs as summarized below.

<Table shown on following page>

Roadway Fee Programs		
Programs	Cost	
Foothill/Eastern Transportation Corridor Road Fee Program – Zone A	\$4,976 / SFD	
Foothill Circulation Phasing Plan (non-participating FCPP Landowners) – Zone 4	\$3,578 / SFD	
Santiago Canyon Road Major Thoroughfare and Bridge Fee Program and Safety Improvement Program	\$662 / SFD	

F. Circulation Recommendations

1. On-Site

- I. Construct the on-site circulation system per the detailed site plan.
- II. Provide the following project access points on Santiago Canyon Road:
 - a. Project Access full access.
- III. Install stop signs, stop bars and stop legends at Project Access.

2. Area-Wide

- I. Complete any remaining street half-section improvements on Santiago Canyon Road, directly adjacent to the project boundaries. This should include the following:
 - i. Santiago Canyon Road (NS) at Project Access (EW):
 - 1. Install one (1) exclusive NB right turn pocket and one (1) exclusive SB left turn pocket on Santiago Canyon Road. The turn pockets shown on the Tentative Tract Map include 300 feet of storage which is more than sufficient storage to accommodate

- the traffic generated by the project. Furthermore, they provide additional distance for vehicle deceleration for both left and right turning vehicles.
- 2. Install one (1) WB right turn lane and one (1) WB left turn lane for traffic exiting the project site.
- II. The recommendations for Buildout (Year 2035) With Project are summarized on Exhibit O and Table 11. It should be noted that these improvements are not needed for near-term conditions and may not be required in the future depending upon actual development and growth in traffic in the area. The Santiago Canyon Road Major Thoroughfare and Bridge Fee Program can also help fund these improvements. A detailed cost estimate for intersection improvements is shown in Appendix N.
- III. As detailed in Table 11, the project should participate in the installation of the following off-site improvements:
 - i. Santiago Canyon Road (NS) at Live Oak Canyon Road (EW):
 - 1. Install traffic signal and interconnect devices.

The project's "fair share" cost of this improvement is \$9,737.

- ii. Santiago Canyon Road/El Toro Road (NS) at Glenn Ranch Road (EW):
 - 1. Restripe existing roadway to provide an additional EB left turn lane on Glenn ranch Road.
 - 2. Restripe Santiago Canyon Road to provide a NB receiving lane. The project's "fair share" cost of this improvement is \$196.
- IV. Traffic signing/striping should be implemented in conjunction with detailed construction plans for the project site.
- V. At the time of building permits, the project should pay the appropriate road fees as noted in Section 8.0 of this report.

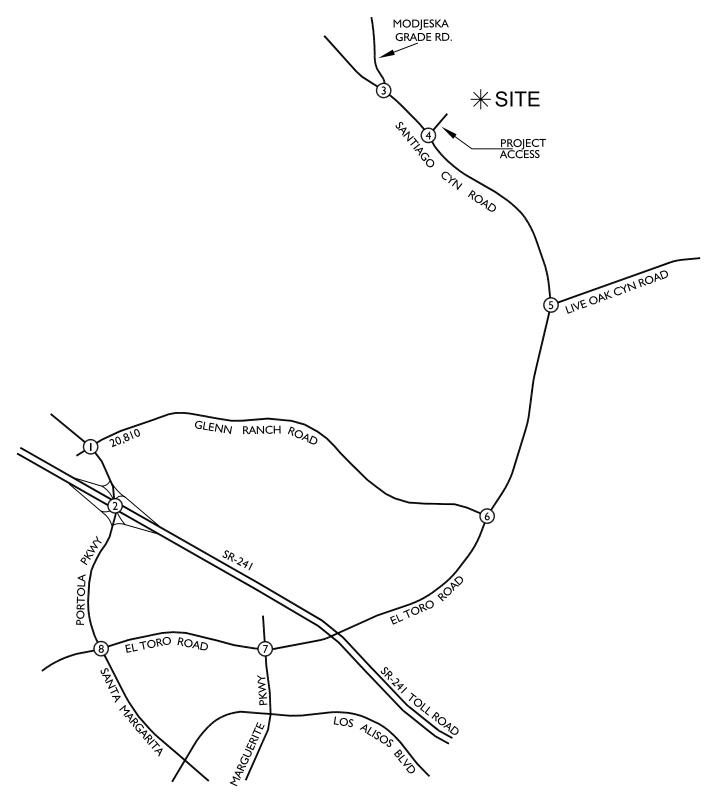
3. Fair Share Analysis

Table 12 shows the fair-share analysis at each of the study area intersections. As shown in Table 12, the project's anticipated traffic contribution to the study area intersections ranges between 2.93% and 7.03% for the Buildout (Year 2035) With Project conditions.

G. Intersection Sight Distance, Safety and Operational Improvements

The driveways should maintain a clear line of sight for vehicles leaving the site as required by the County of Orange standards. Trees, bushes and architectural décor should yield to the line of sight requirements.

As is the case for any roadway design, the County of Orange should periodically review traffic operations in the vicinity of the site once the project is constructed to assure that the traffic operations are satisfactory.


H. Conclusions

Based upon this traffic study, the proposed Saddle Crest development can be accommodated in the County of Orange, given that the improvements listed in this report are implemented.

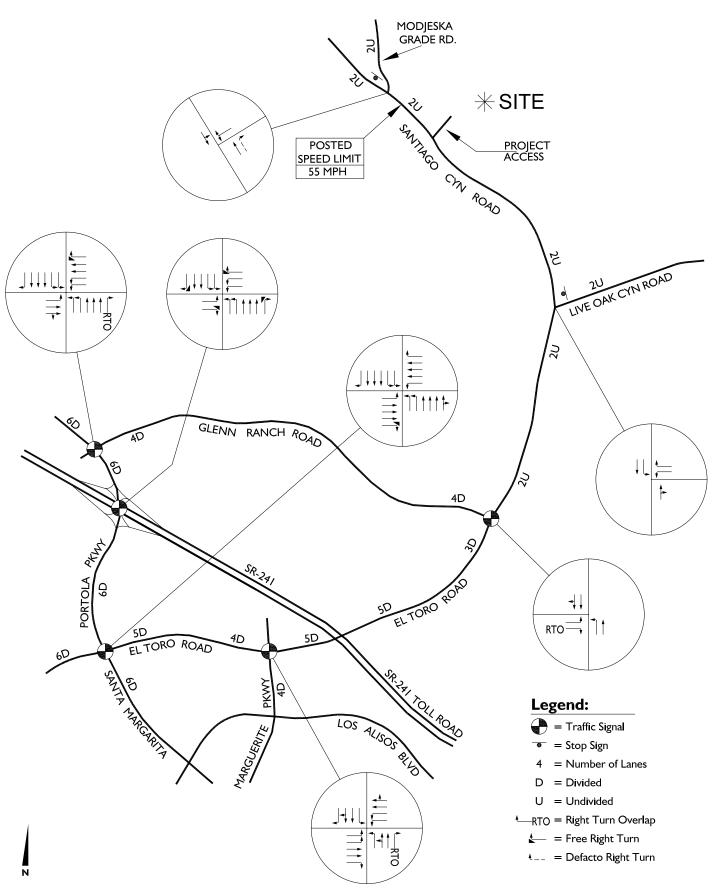
THIS PAGE INTENTIONALLY LEFT BLANK

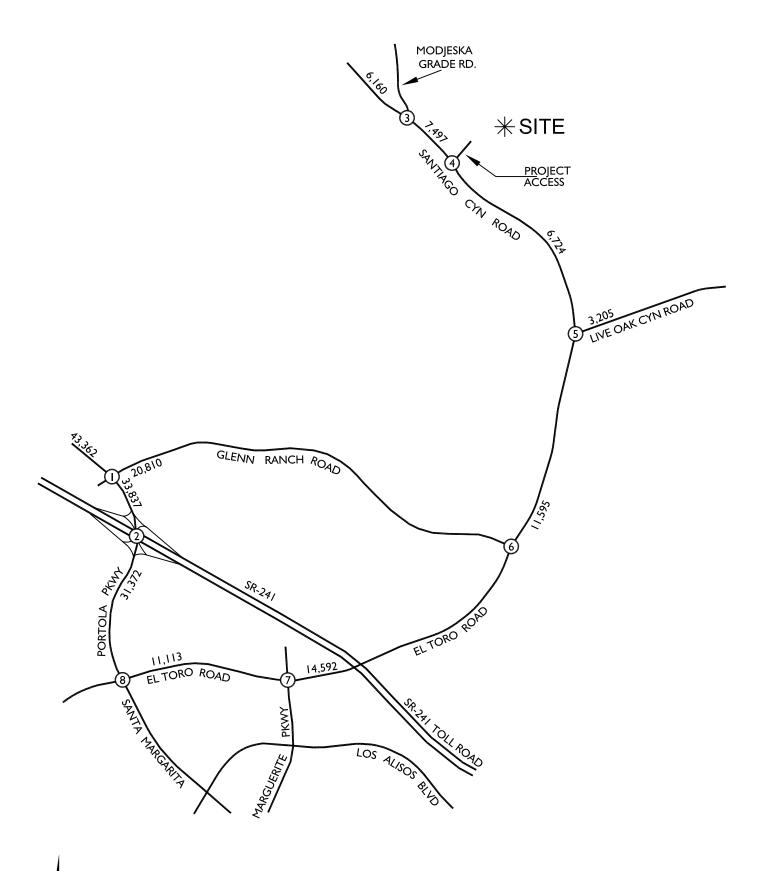
Exhibits

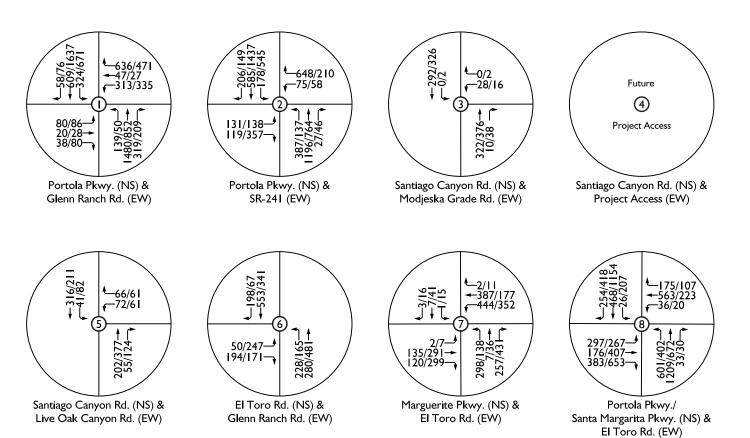

Exhibit A **Location Map**

Study Area Intersections

Exhibit B **Site Plan**

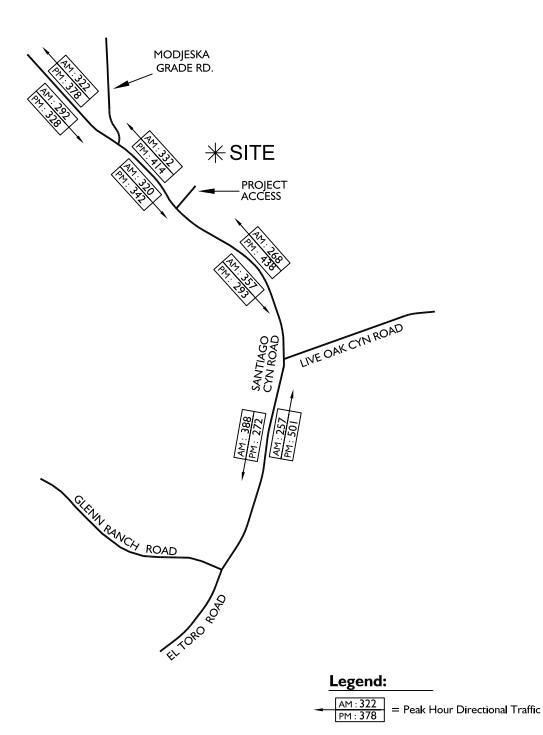





Exhibit C

Existing Lane Geometry and Intersection Controls

Existing Peak Hour Intersection Volumes and Average Daily Traffic (ADT)

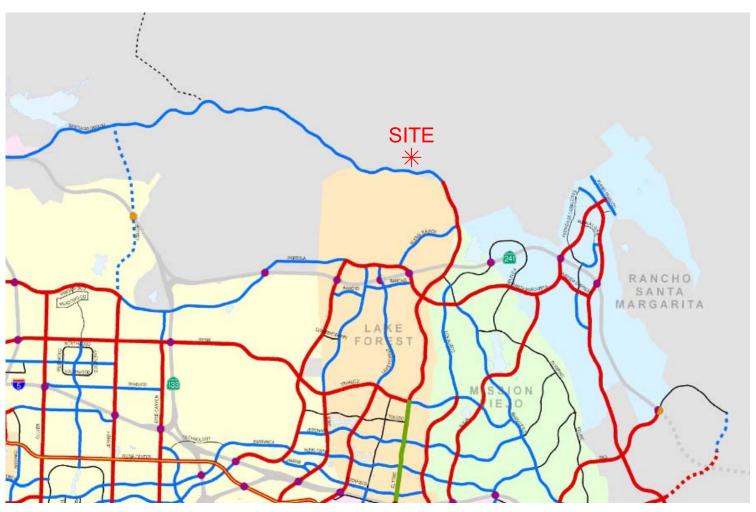

Legend:

= Study Area Intersection

10/20 = AM/PM Peak Hour Volumes

10,000 = Average Daily Traffic

Santiago Canyon Road Existing Peak Hour Roadway Segment Volumes



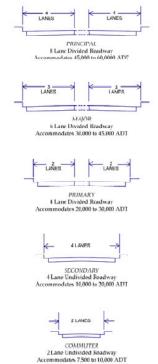
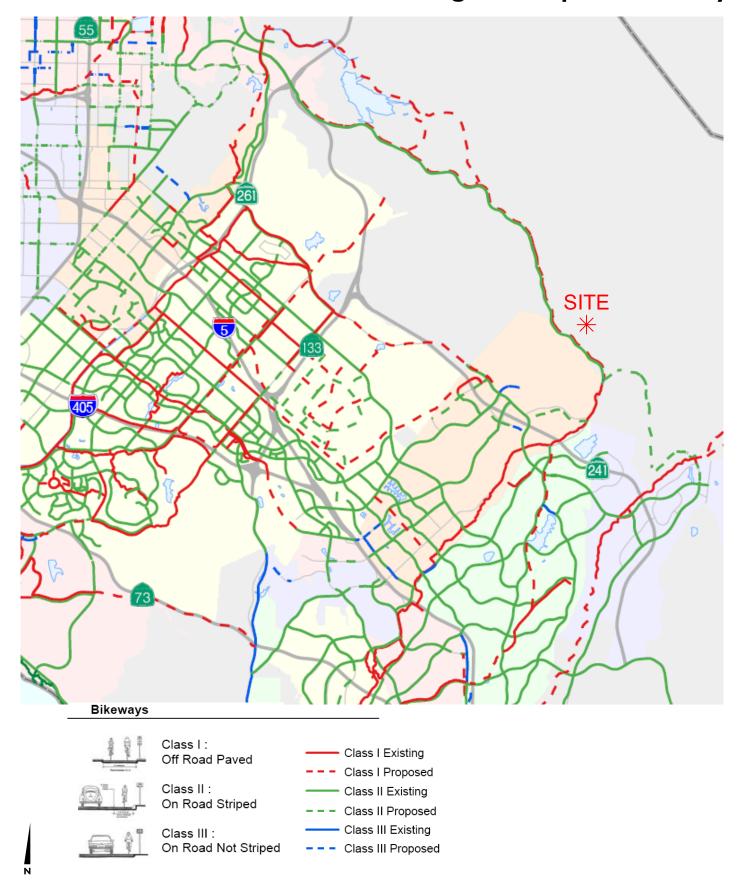
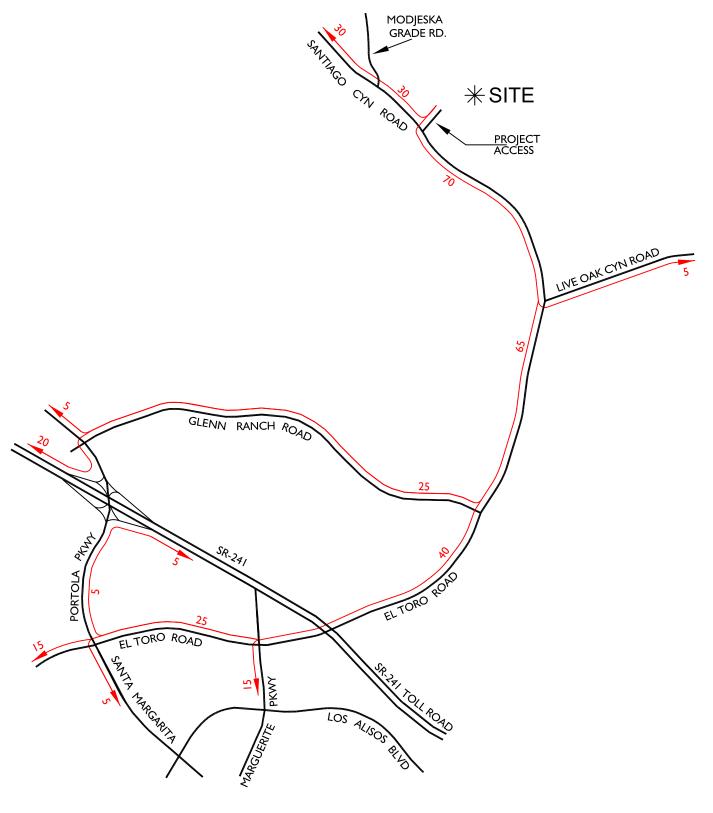


Exhibit E-I

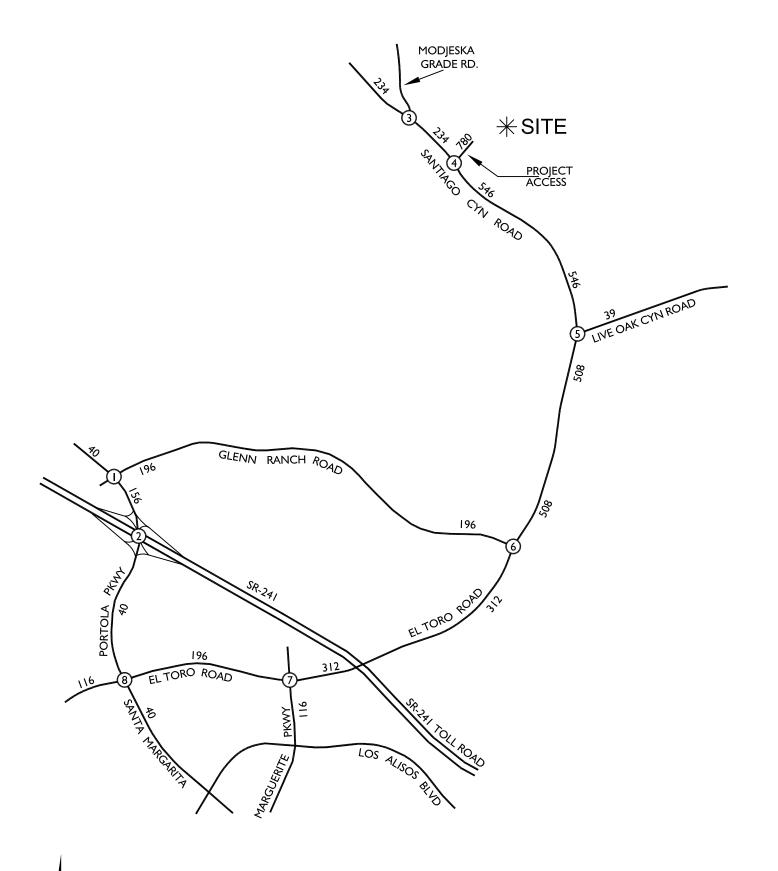
Orange County Transportation Authority (OCTA) Master Plan of Arterial Highways and Roadway Cross Sections

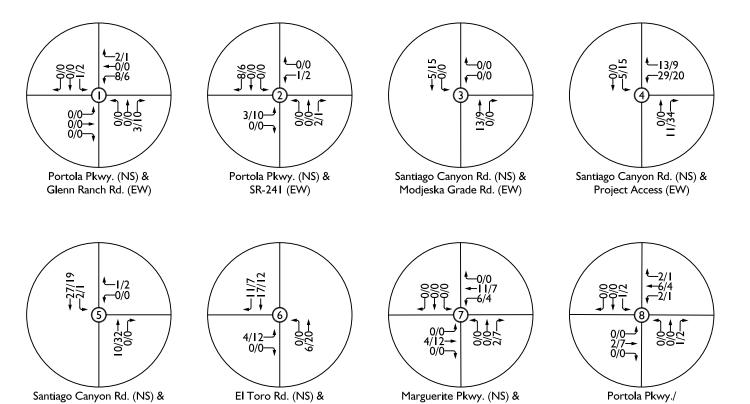




Orange County Transportation Authority (OCTA) Existing and Proposed Bikeways

Project Trip Distribution




Legend:

IO = Percent to/from Project

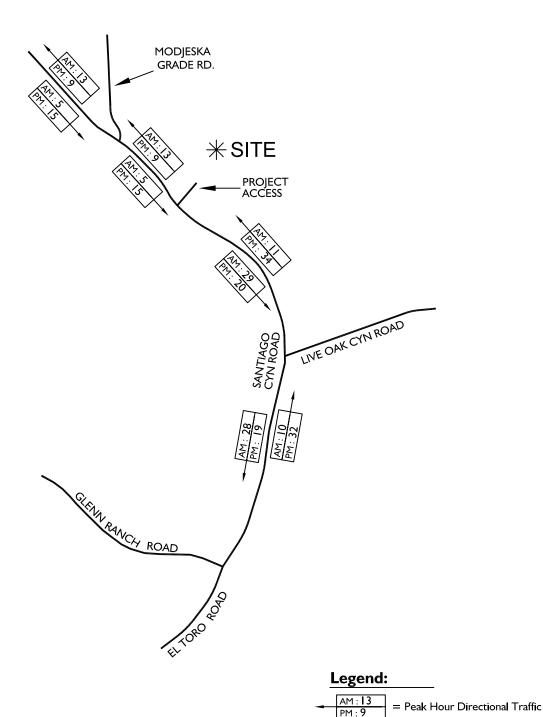
Project Peak Hour Intersection Volumes and Average Daily Traffic (ADT)

El Toro Rd. (EW)

Glenn Ranch Rd. (EW)

Live Oak Canyon Rd. (EW)

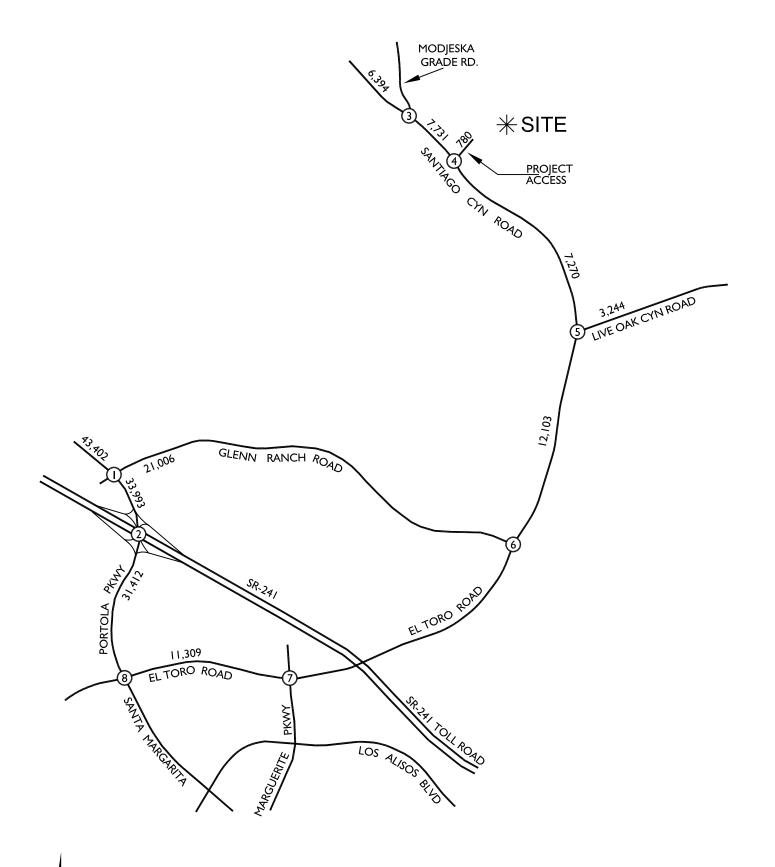
Legend:

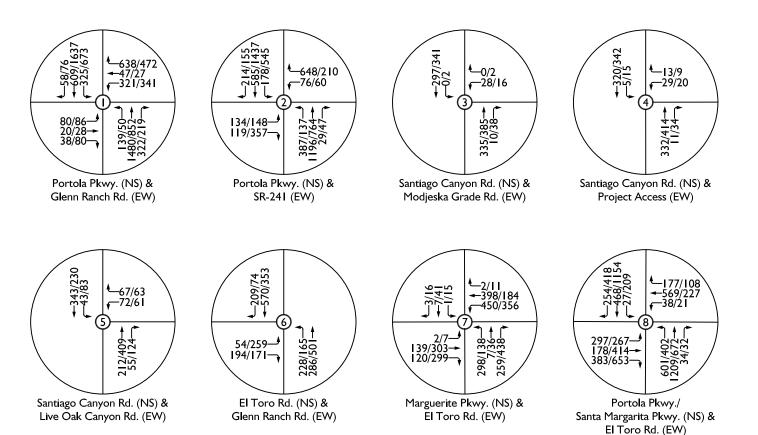

Study Area Intersection

10/20 = AM/PM Peak Hour Volumes

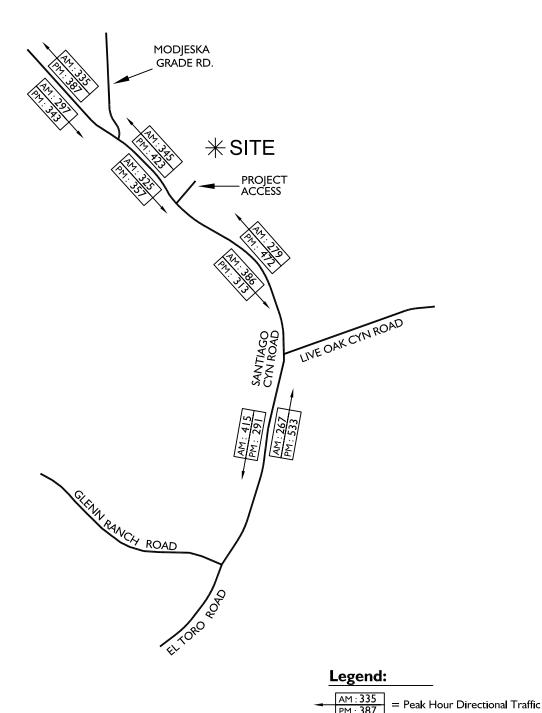
100 = Average Daily Traffic

Santa Margarita Pkwy. (NS) & El Toro Rd. (EW)


Project Peak Hour Roadway Segment Volumes along Santiago Canyon Road



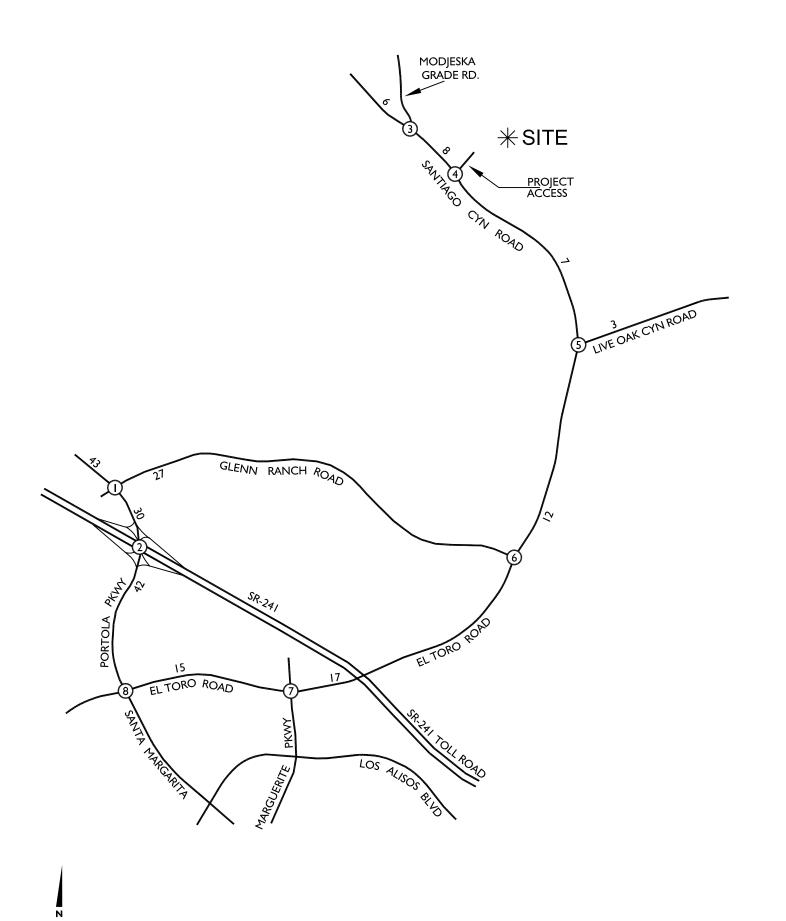
Existing Plus Project Peak Hour Intersection Volumes and Average Daily Traffic (ADT)

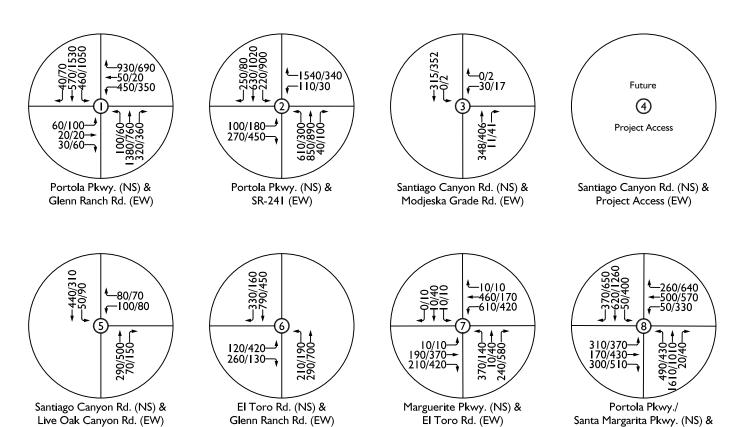

Legend:

Study Area Intersection

10/20 = AM/PM Peak Hour Volumes

10,000 = Average Daily Traffic


Existing Plus Project Peak Hour Roadway Segment Volumes along Santiago Canyon Road



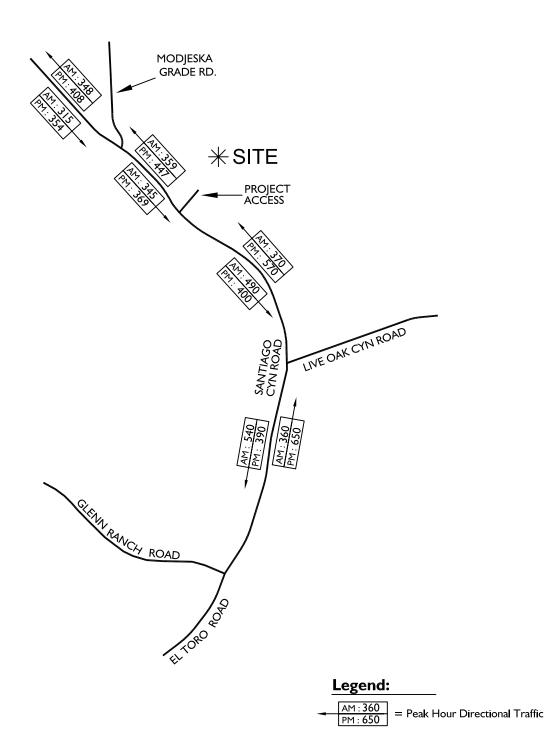
Interim Year (Year 2015) Without Project Peak Hour Intersection Volumes and Average Daily Traffic (ADT)

Legend:

1 = Study Area Intersection

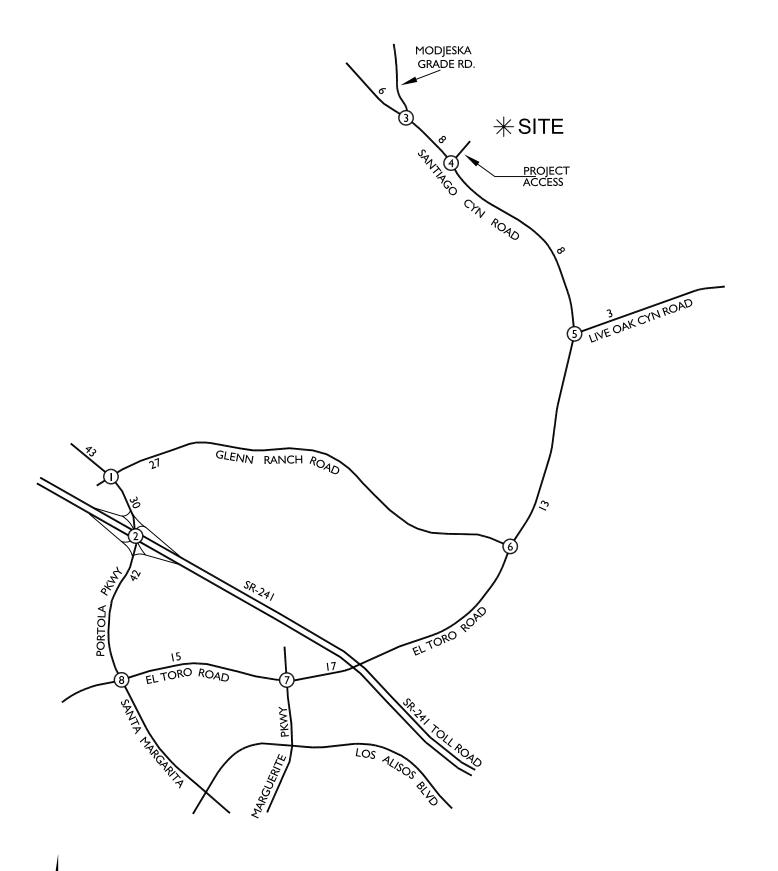
10/20 = AM/PM Peak Hour Volumes

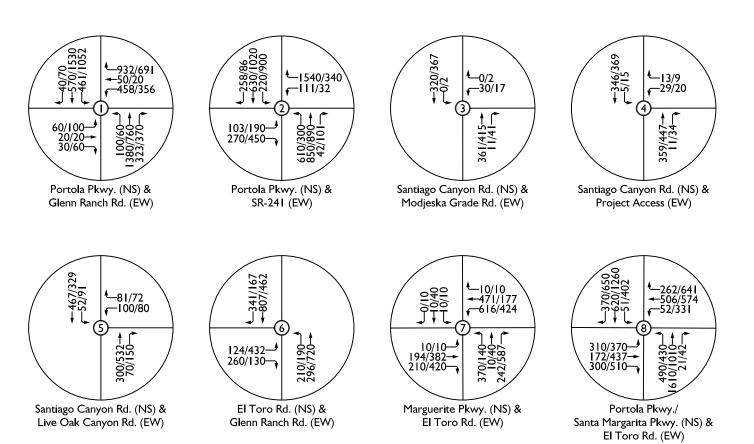
10 = Average Daily Traffic (1,000s)


Note:

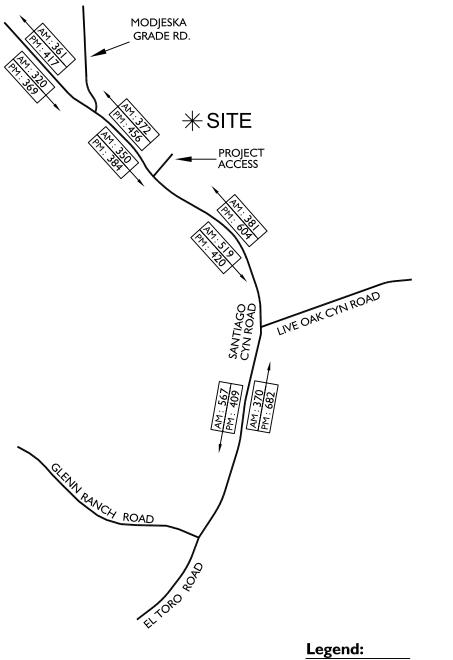
Interim (Year 2015) traffic volumes and ADTs are from Austin-Foust Associates, Inc. Saddle Crest Traffic Forecast Data, except for the intersection of Santiago Canyon Road and Modjeska Grade Road. Traffic volumes for this intersection were calculated using a 2% growth rate per year based on existing traffic volumes counted by RK in May 2011.

El Toro Rd. (EW)


Interim Year (2015) Without Project Peak Hour Roadway Segment Volumes along Santiago Canyon Road



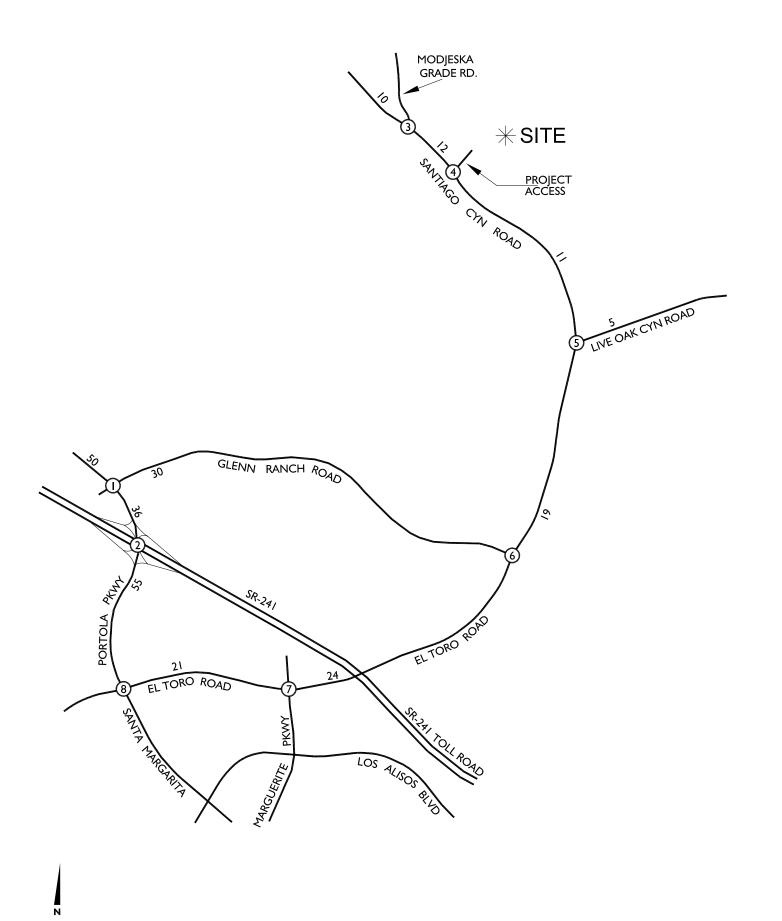
Interim Year (Year 2015) With Project Peak Hour Intersection Volumes and Average Daily Traffic (ADT)

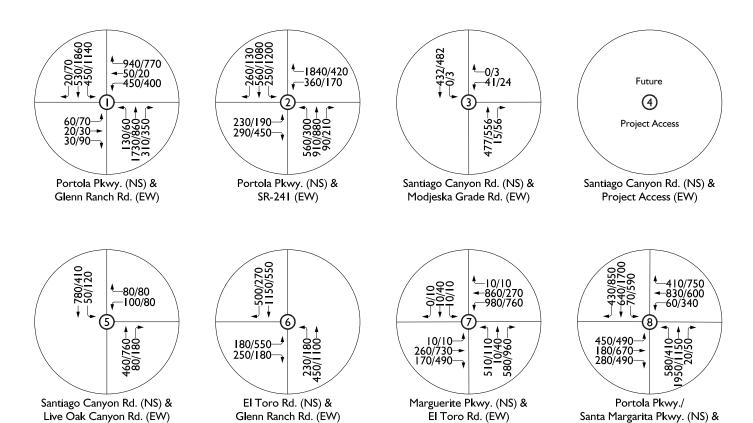

Legend:

(I) = Study Area Intersection

10/20 = AM/PM Peak Hour Volumes

10 = Average Daily Traffic (1,000s)


Interim Year (2015) With Project Peak Hour Roadway Segment Volumes along Santiago Canyon Road



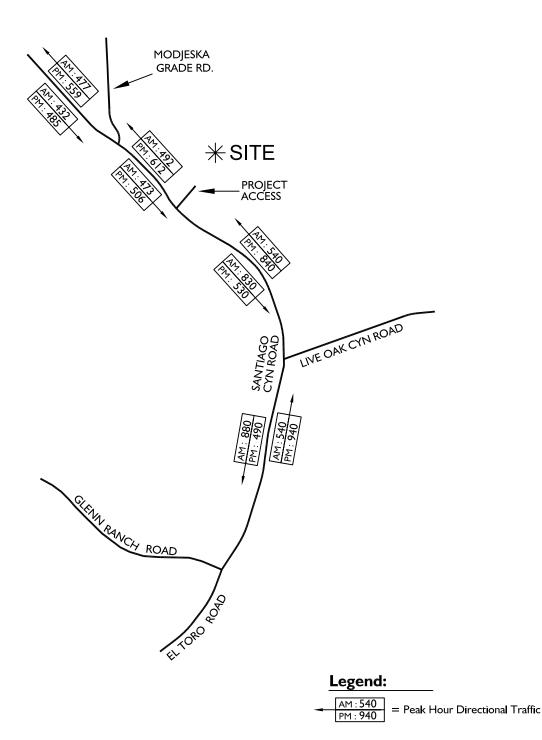
Buildout (Year 2035) Without Project Peak Hour Intersection Volumes and Average Daily Traffic (ADT)

Legend:

1 = Study Area Intersection

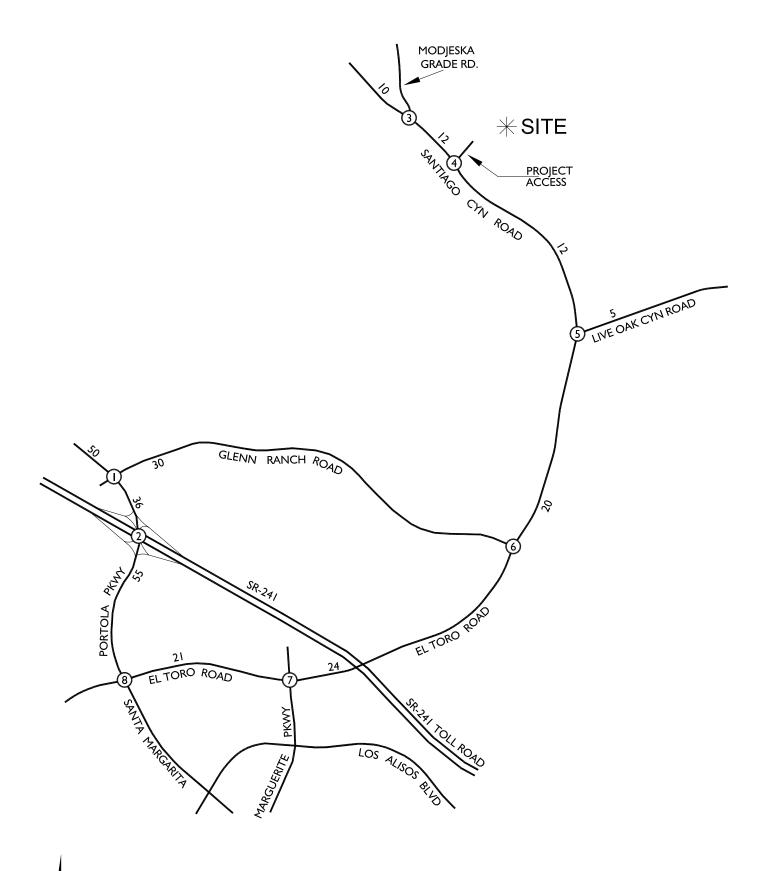
10/20 = AM/PM Peak Hour Volumes

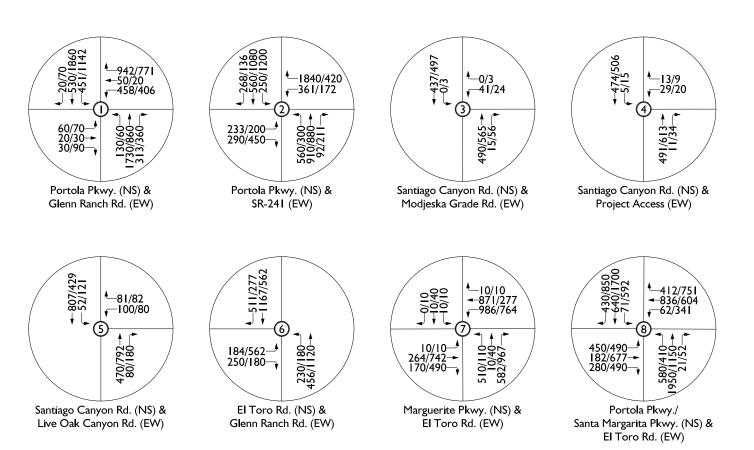
10 = Average Daily Traffic (1,000s)


Note

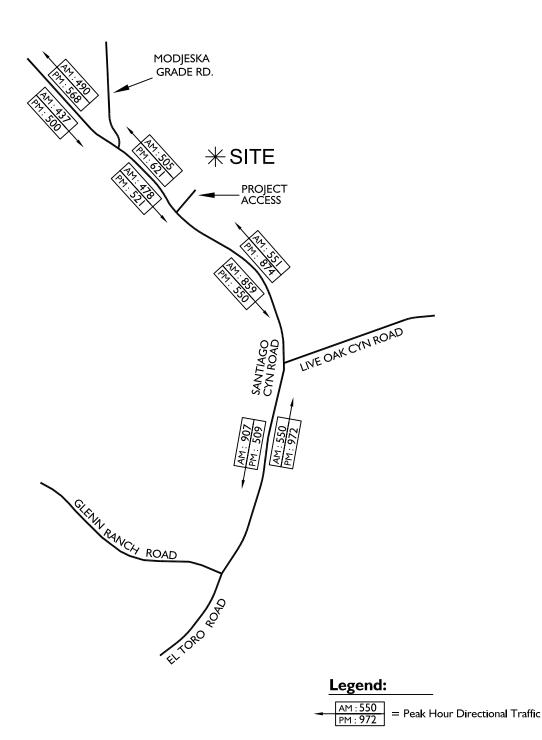
Buildout (Year 2035) traffic volumes and ADTs are from Austin-Foust Associates, Inc. Saddle Crest Traffic Forecast Data, except for the intersection of Santiago Canyon Road and Modjeska Grade Road. Traffic volumes for this intersection were calculated using a 2% growth rate per year based on existing traffic volumes counted by RK in May 2011.

El Toro Rd. (EW)


Buildout Year Without Project Peak Hour Roadway Segment Volumes along Santiago Canyon Road

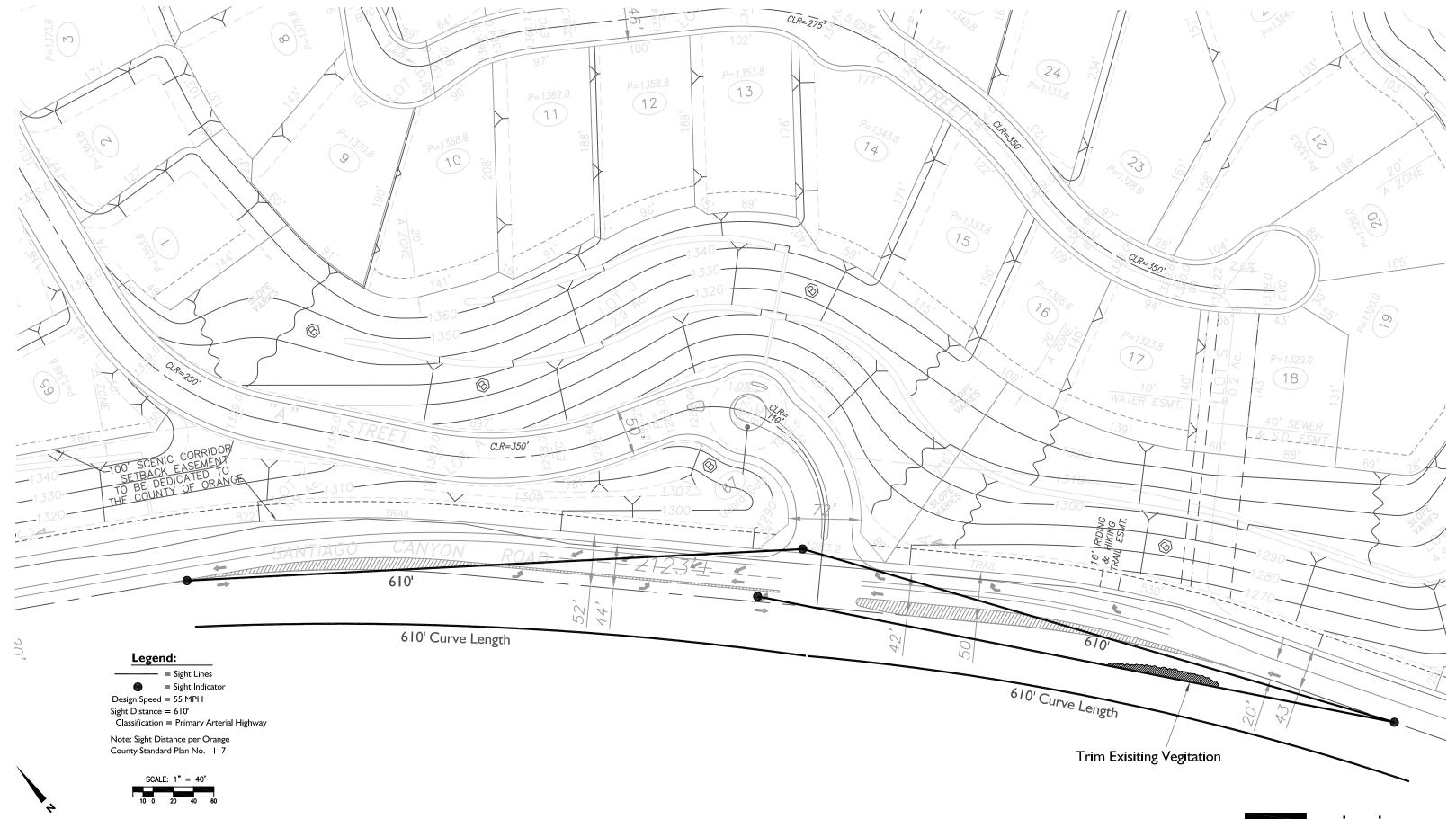


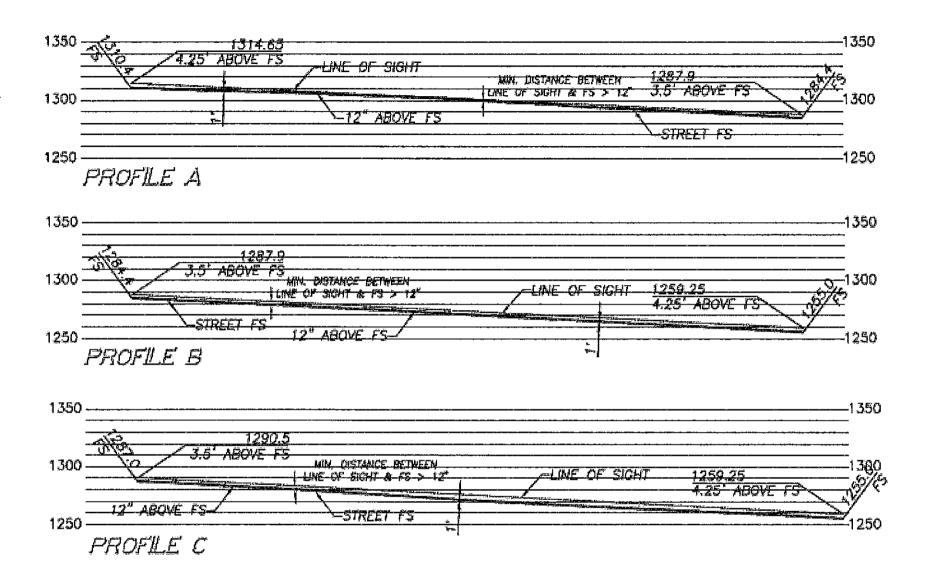
Buildout Year With Project Peak Hour Intersection Volumes and Average Daily Traffic (ADT)

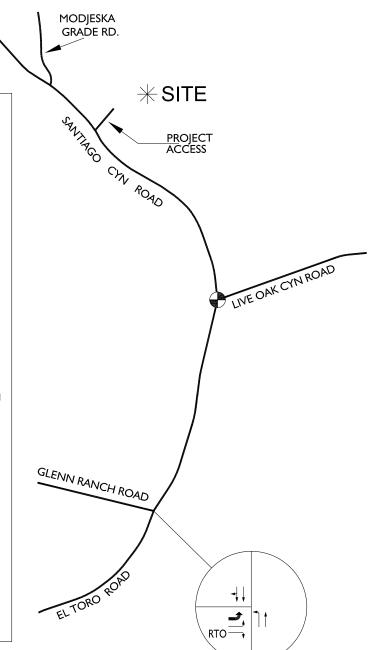

Legend:

(I) = Study Area Intersection

10/20 = AM/PM Peak Hour Volumes


10 = Average Daily Traffic (1,000s)


Buildout Year With Project Peak Hour Roadway Segment Volumes along Santiago Canyon Road



SOURCE: HUNSAKER & ASSOCIATES IRVINE, INC.

Recommendations

General Notes:

1. On-Site Recommendations

- I. Construct the on-site circulation system per the detailed site plan.
- II. Provide the following project access point on Santiago Canyon Road:
 - a. Project Access full access.
- III. Install stop signs, stop bars and stop legends at Project Access.

2. Area-Wide Recommendations

- Complete any remaining street half-section improvements on Santiago Canyon Road, directly adjacent to the project boundaries.
 - i. Santiago Canyon Road (NS) at Project Access (EW):
 - i.a. Install northbound right turn pocket
 - i.b. Install southbound left turn pocket
 - i.c. Install westbound right turn lane and westbound left turn lane for project acess.
 - i.d. Install stop sign, stop bar, and stop legend for westbound project access.
- II. As detailed in Table 11, the project should participate on a fair share bases in the installation of the following off-site improvements:
 - i. Santiago Canyon Road (NS) at Live Oak Canyon Road (EW):ii.a. Install traffic signal and interconnect.
 - ii. Santiago Canyon Road/El Toro Road (NS) at Glenn Ranch Road (EW):
 - iii.a. Restripe to add one additional eastbound left turn Lane on Glenn Ranch Road
 - iii.b. Restripe to add one additional northbound receiving lane on Santiago Canyon Road
- III. Traffic signing/striping should be implemented in conjunction with detailed construction plans for the project site.
- IV. The recommendations for Buildout (Year 2035) With Project are summarized in Section 8 of the report and in Table 11.

Legend:

= Install Traffic Signal

-

= Improvements

Tables

TABLE 1
Intersection Analysis For Existing Conditions

					Int	tersec	tion Ap	proa	ch La	ne(s) ¹					al V/C r Delay	Leve	el of
	Traffic	No	orthb	ound	Sc	uthb	ound	E	astbo	ound	W	estbe	ound	(Se	c.) ²	Ser	vice
Intersection	Control ³	L	Т	R	L	Т	R	L	Т	R	L	Т	R	AM	PM	AM	PM
Portola Parkway (NS) at																	
• Glenn Ranch Road (EW)	TS	2.0	3.0	1.0	2.0	3.0	1.0	1.0	1.5	0.5	2.0	2.0	1.0>>	0.550	0.560	А	А
• SR-241 Toll Road (EW)	TS	2.0	3.0	1.0>>	2.0	2.0	1.0>>	1.0	0.0	1.0>>	2.0	0.0	1.0>>	0.413	0.594	А	А
Santiago Canyon Road (NS) at																	
Modjeska Grade Road (EW)	CSS	0.0	1.0	1.0	0.0	0.5	0.5	0.0	0.0	0.0	0.5	0.0	0.5	14.3	14.4	В	В
Project Access (EW)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
• Live Oak Canyon Road (EW)	CSS	0.0	0.5	0.5	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	16.1	18.9	С	С
Santiago Canyon Road / El Toro Road (NS) at																	
• Glenn Ranch Road (EW)	TS	1.0	1.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	0.502	0.478	А	А
Marguerite Parkway / Saddleback Church (NS) at																	
• El Toro Road (EW)	TS	1.5	1.5	1.0>	1.0	1.5	1.5	2.0	2.0	1.0	2.0	1.5	0.5	0.330	0.427	А	А
Portola Parkway / Santa Margarita Parkway (NS) at																	
• El Toro Road (EW)	TS	2.0	3.5	0.5	2.0	3.0	1.0	1.0	3.0	1.0>>	1.0	3.0	1.0	0.639	0.605	В	В

When a right turn lane is designated, the lane can either be striped or unstriped. To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. Where "1" is indicated for the through movement and "0"s are indicated for R/L movements, the R and/or L turns are shared with the through movement.

L = Left; T = Through; R = Right; > = Right Turn Overlap; >> = Free Right Turn;**Bold**= Improvement

² Analysis Software: Traffix, Version 8.0. Per the Intersection Capacity Utilization methodology, overall volume to capacity ratios and levels of service are shown for intersections controlled by traffic signals. Critical delay in seconds is shown per Highway Capacity Manual (HCM 2000) methodology to analyze stop controlled intersections and LOS is determined based on the worst individual movement or movements sharing a single lane.

³ TS = Traffic Signal

TABLE 2 Trip Generation Rates¹

					Peak	Hour			
				AM			PM		
Land Use	Quantity	Units ²	In	Out	Total	In	Out	Total	Daily
Single-Family Detached Housing	65	DU	0.24	0.65	0.89	0.76	0.44	1.20	12.00

¹ Source: The daly trip generation is based on the single family detached rate from the County of Orange Trip Generation Rate Summary (Daily Vehicle Trip Generation Rates, August 1982). The peak hour trip generation rates were taken from the Foothill/Trabuco Specific Plan Traffic Analysis (Austin-Foust Associates, In. July 1991).

² DU = Dwelling Units

TABLE 3 **Trip Generation**

					Peak	Hour			
				AM			PM		
Land Use	Quantity	Units ¹	In	Out	Total	In	Out	Total	Daily
Single-Family Detached Housing	65	DU	16	42	58	49	29	78	780

¹ DU = Dwelling Units

j:\rktables\RK9295TB.xls JN:2218-2011-01

TABLE 4 Intersection Analysis For Existing Plus Project Conditions

					Int	tersec	tion Ap	proa	ch La	ne(s) ¹					al V/C r Delay	Leve	el of
	Traffic	No	orthb	ound	Sc	uthb	ound	Е	astbo	ound	W	/estb	ound	(Se	c.) ²	Ser	vice
Intersection	Control ³	L	Т	R	L	Т	R	L	Т	R	L	Т	R	AM	PM	AM	PM
Portola Parkway (NS) at																	
Glenn Ranch Road (EW)	TS	2.0	3.0	1.0	2.0	3.0	1.0	1.0	1.5	0.5	2.0	2.0	1.0>>	0.555	0.562	А	А
• SR-241 Toll Road (EW)	TS	2.0	3.0	1.0>>	2.0	2.0	1.0>>	1.0	0.0	1.0>>	2.0	0.0	1.0>>	0.415	0.600	А	В
Santiago Canyon Road (NS) at																	
Modjeska Grade Road (EW)	CSS	0.0	1.0	1.0	0.0	0.5	0.5	0.0	0.0	0.0	0.5	0.0	0.5	14.6	14.7	В	В
Project Access (EW)	CSS	0.0	1.0	1.0	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	14.0	15.6	В	В
Live Oak Canyon Road (EW)	CSS	0.0	0.5	0.5	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	17.0	20.3	С	С
Santiago Canyon Road / El Toro Road (NS) at																	
Glenn Ranch Road (EW)	TS	1.0	1.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	0.510	0.497	А	А
Marguerite Parkway / Saddleback Church (NS) at																	
• El Toro Road (EW)	TS	1.5	1.5	1.0>	1.0	1.5	1.5	2.0	2.0	1.0	2.0	1.5	0.5	0.332	0.431	А	А
Portola Parkway / Santa Margarita Parkway (NS) at																	
• El Toro Road (EW)	TS	2.0	3.5	0.5	2.0	3.0	1.0	1.0	3.0	1.0>>	1.0	3.0	1.0	0.640	0.606	В	В

When a right turn lane is designated, the lane can either be striped or unstriped. To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. Where "1" is indicated for the through movement and "0"s are indicated for R/L movements, the R and/or L turns are shared with the through movement.

 $L = Left; T = Through; R = Right; > = Right Turn Overlap; >> = Free Right Turn; \underline{\textbf{Bold}} = Improvement$

Analysis Software: Traffix, Version 8.0. Per the Intersection Capacity Utilization methodology, overall volume to capacity ratios and levels of service are shown for intersections controlled by traffic signals. Critical delay in seconds is shown per Highway Capacity Manual (HCM 2000) methodology to analyze stop controlled intersections and LOS is determined based on the worst individual movement or movements sharing a single lane.

³ TS = Traffic Signal

TABLE 5
Intersection Analysis For Interim Year (2015) Without Project Conditions

					Int	ersec	tion Ap	proa	ch La	ne(s) ¹					al V/C o or	Leve	el of
lada waa adia w	Traffic	No	orthb T	ound R	Sc	uthb T	ound R	E	astbo T	ound R	۱,	/estb	ound R	Delay AM	(Sec.) ² PM	Ser AM	vice PM
Intersection	Control ³	_		N.			N.	_		N.			N.	Alvi	PIVI	Alvi	PIVI
Portola Parkway (NS) at																	
Glenn Ranch Road (EW)	TS	2.0	3.0	1.0	2.0	3.0	1.0	1.0	1.5	0.5	2.0	2.0	1.0>>	0.609	0.646	В	В
• SR-241 Toll Road (EW)	TS	2.0	3.0	1.0>>	2.0	2.0	1.0>>	1.0	0.0	1.0>>	2.0	0.0	1.0>>	0.474	0.595	Α	Α
Santiago Canyon Road (NS) at																	
Modjeska Grade Road (EW)	CSS	0.0	1.0	1.0	0.0	0.5	0.5	0.0	0.0	0.0	0.5	0.0	0.5	15.1	14.6	С	В
Project Access (EW)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Live Oak Canyon Road (EW)	CSS	0.0	0.5	0.5	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	26.0	28.7	D	D
Santiago Canyon Road / El Toro Road (NS) at																	
Glenn Ranch Road (EW)	TS	1.0	1.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	0.633	0.709	В	С
Marguerite Parkway / Saddleback Church (NS) at																	
• El Toro Road (EW)	TS	1.5	1.5	1.0>	1.0	1.5	1.5	2.0	2.0	1.0	2.0	1.5	0.5	0.449	0.562	А	А
Portola Parkway / Santa Margarita Parkway (NS) at																	
• El Toro Road (EW)	TS	2.0	3.5	0.5	2.0	3.0	1.0	1.0	3.0	1.0>>	1.0	3.0	1.0	0.691	1.039	В	F

When a right turn lane is designated, the lane can either be striped or unstriped. To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. Where "1" is indicated for the through movement and "0"s are indicated for R/L movements, the R and/or L turns are shared with the through movement.

 $L = Left; T = Through; R = Right; > = Right Turn Overlap; >> = Free Right Turn; \\ \underline{\textbf{Bold}} = Improvement$

² Analysis Software: Traffix, Version 8.0. Per the Intersection Capacity Utilization methodology, overall volume to capacity ratios and levels of service are shown for intersections controlled by traffic signals. Critical delay in seconds is shown per Highway Capacity Manual (HCM 2000) methodology to analyze stop controlled intersections and LOS is determined based on the worst individual movement or movements sharing a single lane.

³ TS = Traffic Signal CSS = Cross Street Stop

TABLE 6 Intersection Analysis For Interim Year (2015) With Project Conditions

							ction Ap							Rati	al V/C		el of
Intersection	Traffic Control ³	L	orthb T	ound R	L	uthb T	ound R	L	astbo T	ound R	L	estb T	ound R	Delay AM	(Sec.) ² PM	Ser AM	vice PM
Portola Parkway (NS) at																	
Glenn Ranch Road (EW)	TS	2.0	3.0	1.0	2.0	3.0	1.0	1.0	1.5	0.5	2.0	2.0	1.0>>	0.611	0.648	В	В
SR-241 Toll Road (EW)	TS	2.0	3.0	1.0>>	2.0	2.0	1.0>>	1.0	0.0	1.0>>	2.0	0.0	1.0>>	0.475	0.601	А	В
Santiago Canyon Road (NS) at																	
Modjeska Grade Road (EW)	CSS	0.0	1.0	1.0	0.0	0.5	0.5	0.0	0.0	0.0	0.5	0.0	0.5	15.4	14.9	C	В
Project Access (EW)	CSS	0.0	1.0	1.0	<u>1.0</u>	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	14.7	16.6	В	C
Live Oak Canyon Road (EW)	CSS	0.0	0.5	0.5	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	28.3	31.6	D	D
Santiago Canyon Road / El Toro Road (NS) at																	
Glenn Ranch Road (EW)	TS	1.0	1.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	0.641	0.728	В	С
Marguerite Parkway / Saddleback Church (NS) at																	
• El Toro Road (EW)	TS	1.5	1.5	1.0>	1.0	1.5	1.5	2.0	2.0	1.0	2.0	1.5	0.5	0.451	0.565	А	А
Portola Parkway / Santa Margarita Parkway (NS) at																	
• El Toro Road (EW) ⁴	TS	2.0	3.5	0.5	2.0	3.0	1.0	1.0	3.0	1.0>>	1.0	3.0	1.0	0.692	1.040	В	F

¹ When a right turn lane is designated, the lane can either be striped or unstriped. To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. Where "1" is indicated for the through movement and "0"s are indicated for R/L movements, the R and/or L turns are shared with the through movement.

 $L = Left; T = Through; R = Right; > = Right Turn Overlap; >> = Free Right Turn; \\ \underline{\textbf{Bold}} = Improvement$

Analysis Software: Traffix, Version 8.0. Per the Intersection Capacity Utilization methodology, overall volume to capacity ratios and levels of service are shown for intersections controlled by traffic signals. Critical delay in seconds is shown per Highway Capacity Manual (HCM 2000) methodology to analyze stop controlled intersections and LOS is determined based on the worst individual movement or movements sharing a single lane.

³ TS = Traffic Signal

⁴ The project does not have a significant impact at this intersection.

TABLE 7
Intersection Analysis For Buildout (Year 2035) Without Project Conditions

					Int	terse	tion Ap	proa	ch La	ne(s) ¹					al V/C o or	l ev	el of
	Traffic	No	orthb	ound	Sc	outhb	ound	Е	astbo	ound	V	estb	ound	Delay	(Sec.) ²		vice
Intersection	Control ³	L	T	R	L	T	R	L	Т	R	L	Т	R	AM	PM	AM	PM
Portola Parkway (NS) at																	
Glenn Ranch Road (EW)	TS	2.0	3.0	1.0	2.0	3.0	1.0	1.0	1.5	0.5	2.0	2.0	1.0>>	0.672	0.725	В	C
• SR-241 Toll Road (EW)	TS	2.0	3.0	1.0>>	2.0	2.0	1.0>>	1.0	0.0	1.0>>	2.0	0.0	1.0>>	0.515	0.687	А	В
Santiago Canyon Road (NS) at																	
Modjeska Grade Road (EW)	CSS	0.0	1.0	1.0	0.0	0.5	0.5	0.0	0.0	0.0	0.5	0.0	0.5	12.1	19.7	В	С
Project Access (EW)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Live Oak Canyon Road (EW)	CSS	0.0	0.5	0.5	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	63.1	82.5	F	F
- With Improvements ⁴	<u>TS</u>	0.0	0.5	0.5	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.568	0.721	Α	С
Santiago Canyon Road / El Toro Road (NS) at																	
Glenn Ranch Road (EW)	TS	1.0	1.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	0.796	1.021	C	F
- With Improvements ⁴	TS	1.0	1.0	0.0	0.0	1.0	1.0	2.0	0.0	1.0	0.0	0.0	0.0	0.796	0.859	C	D
Marguerite Parkway / Saddleback Church (NS) at																	
• El Toro Road (EW)	TS	1.5	1.5	1.0>	1.0	1.5	1.5	2.0	2.0	1.0	2.0	1.5	0.5	0.571	0.787	Α	С
Portola Parkway / Santa Margarita Parkway (NS) at																	
• El Toro Road (EW)	TS	2.0	3.5	0.5	2.0	3.0	1.0	1.0	3.0	1.0>>	1.0	3.0	1.0	0.905	1.259	Е	F

When a right turn lane is designated, the lane can either be striped or unstriped. To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. Where "1" is indicated for the through movement and "0"s are indicated for R/L movements, the R and/or L turns are shared with the through movement.

 $L = Left; T = Through; R = Right; > = Right Turn Overlap; >> = Free Right Turn; \\ \underline{\textbf{Bold}} = Improvement$

² Analysis Software: Traffix, Version 8.0. Per the Intersection Capacity Utilization methodology, overall volume to capacity ratios and levels of service are shown for intersections controlled by traffic signals. Critical delay in seconds is shown per Highway Capacity Manual (HCM 2000) methodology to analyze stop controlled intersections and LOS is determined based on the worst individual movement or movements sharing a single lane.

³ TS = Traffic Signal CSS = Cross Street Stop

⁴ Intersection improvements are only shown to compare with Table 8 for condition with the project and where the project would have a significant impact.

TABLE 8 Intersection Analysis For Buildout (Year 2035) With Project Conditions

					In	terse	ction Ap	proa	ch La	ne(s) ¹	ı				al V/C	l ev	el of
	Traffic	No	orthb	ound	Sc	uthb	ound	Е	astbo	ound	W	/estb	ound	Delay	(Sec.) ²		vice
Intersection	Control ³	L	T	R	L	Т	R	L	Т	R	L	Т	R	AM	PM	AM	PM
Portola Parkway (NS) at																	
Glenn Ranch Road (EW)	TS	2.0	3.0	1.0	2.0	3.0	1.0	1.0	1.5	0.5	2.0	2.0	1.0>>	0.674	0.727	В	С
• SR-241 Toll Road (EW)	TS	2.0	3.0	1.0>>	2.0	2.0	1.0>>	1.0	0.0	1.0>>	2.0	0.0	1.0>>	0.516	0.693	А	В
Santiago Canyon Road (NS) at																	
Modjeska Grade Road (EW)	CSS	0.0	1.0	1.0	0.0	0.5	0.5	0.0	0.0	0.0	0.5	0.0	0.5	15.0	20.3	В	С
Project Access (EW)	N/A	0.0	1.0	1.0	<u>1.0</u>	1.0	0.0	0.0	0.0	0.0	<u>1.0</u>	0.0	1.0	19.3	23.1	С	С
Live Oak Canyon Road (EW)	CSS	0.0	0.5	0.5	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	71.2	97.2	F	F
- With Improvements	<u>TS</u>	0.0	0.5	0.5	1.0	1.0	0.0	0.0	0.0	0.0	1.0	0.0	1.0	0.584	0.740	Α	С
Santiago Canyon Road / El Toro Road (NS) at																	
Glenn Ranch Road (EW)	TS	1.0	1.0	0.0	0.0	1.0	1.0	1.0	0.0	1.0	0.0	0.0	0.0	0.804	1.039	D	F
- With Improvements	TS	1.0	1.0	0.0	0.0	1.0	1.0	2.0	0.0	1.0	0.0	0.0	0.0	0.804	0.874	D	D
Marguerite Parkway / Saddleback Church (NS) at																	
• El Toro Road (EW)	TS	1.5	1.5	1.0>	1.0	1.5	1.5	2.0	2.0	1.0	2.0	1.5	0.5	0.574	0.790	В	С
Portola Parkway / Santa Margarita Parkway (NS) at																	
• El Toro Road (EW) ⁴	TS	2.0	3.5	0.5	2.0	3.0	1.0	1.0	3.0	1.0>>	1.0	3.0	1.0	0.906	1.259	Е	F

When a right turn lane is designated, the lane can either be striped or unstriped. To function as a right turn lane there must be sufficient width for right turning vehicles to travel outside the through lanes. Where "1" is indicated for the through movement and "0"s are indicated for R/L movements, the R and/or L turns are shared with the through movement.

 $L = Left; \, T = Through; \, R = Right; \, > = Right \, Turn \, \, Overlap; \, >> = Free \, Right \, Turn; \, \, \underline{\textbf{Bold}} = Improvement$

Analysis Software: Traffix, Version 8.0. Per the Intersection Capacity Utilization methodology, overall volume to capacity ratios and levels of service are shown for intersections controlled by traffic signals. Critical delay in seconds is shown per Highway Capacity Manual (HCM 2000) methodology to analyze stop controlled intersections and LOS is determined based on the worst individual movement or movements sharing a single lane.

³ TS = Traffic Signal

⁴ The project does not have a significant impact at this intersection, so no improvement is necessary.

TABLE 9 Summary Intersection Analysis²

	Intersect	tion Analy Cond	ysis for itions	Existing			lysis For Condition					
	ICU Crit	tical V/C tio ¹	Level o	f Service		tical V/C tio ¹	Level of	Service		nge in V/C Ratio		ficant oact
Intersection	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
Portola Parkway (NS) at												
Glenn Ranch Road (EW)	0.550	0.560	А	А	0.555	0.562	А	А	0.005	0.002	NO	NO
SR-241 Toll Road (EW)	0.413	0.594	А	А	0.415	0.600	А	В	0.002	0.006	NO	NO
Santiago Canyon Road (NS) at												
Modjeska Grade Road (EW)	14.3	14.4	В	В	14.6	14.7	В	В	N/A	N/A	N/A	N/A
Project Access (EW)	N/A	N/A	N/A	N/A	14.0	15.6	В	В	N/A	N/A	N/A	N/A
Live Oak Canyon Road (EW)	16.1	18.9	С	С	17.0	20.3	С	С	N/A	N/A	N/A	N/A
Santiago Canyon Road / El Toro Road (NS) at												
Glenn Ranch Road (EW)	0.502	0.478	А	Α	0.510	0.497	Α	Α	0.008	0.019	NO	NO
Marguerite Parkway / Saddleback Church (NS) at												
• El Toro Road (EW)	0.330	0.427	А	Α	0.332	0.431	Α	Α	0.002	0.004	NO	NO
Portola Parkway / Santa Margarita Parkway (NS) at												
• El Toro Road (EW)	0.639	0.605	В	В	0.640	0.606	В	В	0.001	0.001	NO	NO

	Year						alysis For Project C	Interim onditions				
	ICU Crit	tical V/C tio ¹	Level of	Service	ICU Crit	tical V/C tio ¹	Level of	Service		ige in V/C Ratio	_	ficant pact
Intersection	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
Portola Parkway (NS) at												
Glenn Ranch Road (EW)	0.609	0.646	В	В	0.611	0.648	В	В	0.002	0.002	NO	NO
SR-241 Toll Road (EW)	0.474	0.595	Α	Α	0.475	0.601	Α	В	0.001	0.006	NO	NO
Santiago Canyon Road (NS) at												
Modjeska Grade Road (EW)	15.1	14.6	С	В	15.4	14.9	С	В	N/A	N/A	N/A	N/A
Project Access (EW)	N/A	N/A	N/A	N/A	14.7	16.6	В	С	N/A	N/A	N/A	N/A
Live Oak Canyon Road (EW)	26.0	28.7	D	D	28.3	31.6	D	D	N/A	N/A	N/A	N/A
Santiago Canyon Road / El Toro Road (NS) at												
Glenn Ranch Road (EW)	0.633	0.709	В	С	0.641	0.728	В	C	0.008	0.019	NO	NO
Marguerite Parkway / Saddleback Church (NS) at												
• El Toro Road (EW)	0.449	0.562	Α	А	0.451	0.565	Α	Α	0.002	0.003	NO	NO
Portola Parkway / Santa Margarita Parkway (NS) at												
• El Toro Road (EW)	0.691	1.039	В	F	0.692	1.04	В	F	0.001	0.001	NO	NO

		ction Ana nout Proje	•				lysis For I t Condition					
		tical V/C tio ¹	Level o	f Service		tical V/C tio ¹	Level of	Service		ige in V/C Ratio	9	ficant pact
Intersection	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
Portola Parkway (NS) at												
Glenn Ranch Road (EW)	0.672	0.725	В	С	0.674	0.727	В	С	0.002	0.002	NO	NO
SR-241 Toll Road (EW)	0.515	0.687	Α	В	0.516	0.693	А	В	0.001	0.006	NO	NO
Santiago Canyon Road (NS) at												
Modjeska Grade Road (EW)	12.1	19.7	В	С	15.0	20.3	В	С	N/A	N/A	N/A	N/A
Project Access (EW)	N/A	N/A	N/A	N/A	19.3	23.1	С	С	N/A	N/A	N/A	N/A
• Live Oak Canyon Road (EW) ³	63.1	82.5	F	F	71.2	97.2	F	F	0.016	0.019	<u>YES</u>	<u>YES</u>
- With Improvements	0.568	0.721	Α	С	0.584	0.740	Α	С	0.016	0.019	NO	NO
Santiago Canyon Road / El Toro Road (NS) at												
Glenn Ranch Road (EW)	0.796	1.021	С	F	0.804	1.039	D	F	0.008	0.018	NO	<u>YES</u>
- With Improvements	0.796	0.859	С	D	0.804	0.874	D	D	0.008	0.015	NO	NO
Marguerite Parkway / Saddleback Church (NS) at												
• El Toro Road (EW)	0.571	0.787	А	С	0.574	0.790	В	С	0.003	0.003	NO	NO
Portola Parkway / Santa Margarita Parkway (NS) at												
• El Toro Road (EW)	0.905	1.259	Е	F	0.906	1.259	Е	F	0.001	0.000	NO	NO

Analysis Software: Traffix, Version 8.0. Per the Intersection Capacity Utilization methodology, overall volume to capacity ratios and levels of service are shown for intersections controlled by traffic signals. Critical delay in seconds is shown per Highway Capacity Manual (HCM 2000) methodology to analyze stop controlled intersections, and LOS is determined based on the worst individual movement or movements sharing a single lane.

<sup>Significant Impact Yes, if:

I LOS increases from D to E or F

LOS is already E or F and the change in V/C ratio (ICU) is greater than or equal to 0.010</sup>

For the Intersection of Santiago Canyon Road and Live Oak Canyon Road, significant impact was determined by change in V/C ratio per ICU methodology for signalized intersections.

TABLE 10
Santiago Canyon Road Segment Analysis ¹

			E	xisting C	onditions						Existing	Plus Pro	ject Condit	ions		
Santiago Canyon Road (Link Segment)		AM				PM				AM				PM		
(Link Segment)	Volume	Capacity	V/C Ratio	LOS	Volume	Capacity	V/C Ratio	LOS	Volume	Capacity	V/C Ratio	LOS	Volume	Capacity	V/C Ratio	LOS
North of Modjeska Grade Road																
Northbound	322	1700	0.19	Α	378	1700	0.22	Α	335	1700	0.20	Α	387	1700	0.23	Α
Southbound	292	1700	0.17	Α	328	1700	0.19	Α	297	1700	0.17	Α	343	1700	0.20	Α
North of Project Access																
Northbound	332	1700	0.20	Α	414	1700	0.24	Α	345	1700	0.20	Α	423	1700	0.25	Α
Southbound	320	1700	0.19	Α	342	1700	0.20	Α	325	1700	0.19	Α	357	1700	0.21	Α
North of Live Oak Canyon Road																
Northbound	268	1700	0.16	Α	438	1700	0.26	Α	279	1700	0.16	Α	472	1700	0.28	А
Southbound	357	1700	0.21	Α	293	1700	0.17	Α	386	1700	0.23	Α	313	1700	0.18	Α
North of Glenn Ranch road																1
Northbound	257	1700	0.15	Α	501	1700	0.29	Α	267	1700	0.16	Α	533	1700	0.31	А
Southbound	388	1700	0.23	Α	272	1700	0.16	Α	415	1700	0.24	Α	291	1700	0.17	Α

		Interim	Year (20	15) Witl	hout Project	Conditions				Inter	m (Year 2	2015) W	ith Project	Conditions		
Santiago Canyon Road		AM				PM				AM				PM		
(Link Segment)	Volume	Capacity	V/C Ratio	LOS	Volume	Capacity	V/C Ratio	LOS	Volume	Capacity	V/C Ratio	LOS	Volume	Capacity	V/C Ratio	LOS
North of Modjeska Grade Road																
Northbound	348	1700	0.20	Α	408	1700	0.24	Α	361	1700	0.2	Α	417	1700	0.25	Α
Southbound	315	1700	0.19	Α	354	1700	0.21	Α	320	1700	0.2	Α	369	1700	0.22	Α
North of Project Access																
Northbound	359	1700	0.21	Α	447	1700	0.26	Α	372	1700	0.2	Α	456	1700	0.27	Α
Southbound	345	1700	0.20	Α	369	1700	0.22	Α	350	1700	0.2	Α	384	1700	0.23	А
North of Live Oak Canyon Road																
Northbound	370	1700	0.22	Α	570	1700	0.34	Α	381	1700	0.2	Α	604	1700	0.36	А
Southbound	490	1700	0.29	Α	400	1700	0.24	Α	519	1700	0.3	Α	420	1700	0.25	А
North of Glenn Ranch road																
Northbound	360	1700	0.21	Α	650	1700	0.38	Α	370	1700	0.2176	Α	682	1700	0.40	А
Southbound	540	1700	0.32	Α	390	1700	0.23	Α	567	1700	0.3335	Α	409	1700	0.24	Α

		Buil	dout Yea	r Withou	ıt Project Co	onditions				Ві	uildout Ye	ear With	Project Cor	nditions		
Santiago Canyon Road (Link Segment)		AM				PM				AM				PM		
(Link Segment)	Volume	Capacity	V/C Ratio	LOS	Volume	Capacity	V/C Ratio	LOS	Volume	Capacity	V/C Ratio	LOS	Volume	Capacity	V/C Ratio	LOS
North of Modjeska Grade Road																
Northbound	477	1700	0.28	Α	559	1700	0.33	Α	490	1700	0.29	Α	568	1700	0.33	Α
Southbound	432	1700	0.25	Α	485	1700	0.29	Α	437	1700	0.26	Α	500	1700	0.29	Α
North of Project Access																
Northbound	492	1700	0.29	Α	612	1700	0.36	Α	505	1700	0.30	Α	621	1700	0.37	Α
Southbound	473	1700	0.28	Α	506	1700	0.30	Α	478	1700	0.28	Α	521	1700	0.31	Α
North of Live Oak Canyon Road																
Northbound	540	1700	0.32	Α	840	1700	0.49	Α	551	1700	0.32	Α	874	1700	0.51	Α
Southbound	830	1700	0.49	Α	530	1700	0.31	Α	859	1700	0.51	Α	550	1700	0.32	Α
North of Glenn Ranch road																
Northbound	540	1700	0.32	Α	940	1700	0.55	Α	550	1700	0.32	Α	972	1700	0.57	Α
Southbound	880	1700	0.52	Α	490	1700	0.29	Α	907	1700	0.53	Α	509	1700	0.30	Α

J:\RKtables\RK9295TB.xls JN:2218-2011-01

 $^{^{1}\,\,}$ See section 2 for detailed description of roadway segment analysis

TABLE 11 Required Intersection Improvements¹

Intersection	Interim (Year 2015) With Project Conditions	Buildout (Year 2035) With Project Conditions
Santiago Canyon Road (NS) at:		
Project Access (EW)	NB: Install one (1) right turn pocket SB: Install one (1) left turn pocket WB: Install one (1) left turn lane and one (1) right turn lane	
Live Oak Canyon Road (EW)		Install Traffic Signal and Interconnect
Santiago Canyon Road/El Toro Road (NS) at: Glenn Ranch Road (EW)		EB: Restripe to add one (1) additional left turn lane NB: Restripe to provide one (1) additional receiving lane

Project is responsible for the Interim (Year 2015) and Buildout (Year 2035) improvements, unless completed by others.

TABLE 12 Project Fair-Share Intersection Contribution ¹

	Existing	Conditions	(Year 20	dout 35) With onditions	Growth	in Traffic		ject iffic	Buil (Year 20	t % of dout 35) With onditions
Intersection	AM	PM	AM	PM	AM	PM	AM	PM	AM	PM
Santiago Cyn. Rd/El Toro Rd (NS) at:										
• Glenn Ranch Rd (EW)	1,503	1,472	2,798	2,881	1,295	1,409	38	51	2.93%	3.62%
• Live Oak Cyn. Rd (EW)	752	916	1,590	1,684	838	768	40	54	4.77%	7.03%

	PROJECT "FAIR SHARE" CO	OST	
Intersection	Project % of Buildout (Year 2035) With Project Conditions ²	Cost Estimate for Improvements ³	Project "Fair Share" Cost
Santiago Cyn. Rd/El Toro Rd (NS) at:			
Glenn Ranch Rd (EW)	3.62%	\$5,413	\$196
• Live Oak Cyn. Rd (EW)	7.03%	\$138,475	\$9,737

Only those intersections where the project contributes a significant impact, as defined in section 2 of this report, are listed.

The higher amount of AM/PM peak hour project contribution is shown as "Fair Share" percentage.

See Appendix M for detailed breakdown of cost estimate.

Appendices
, . -

Appendix A

Traffic Count Worksheets

National Data & Surveying Services

Project ID: CA11_1071_003

Day: TUESDAY

City: City of Silverado

Date: 5/24/2011

Oity.	city of Silv	rciado				А	м				Date:	3/2 4 /2011	
NS/EW Streets:	. J. Po	ortola Pkw	γ	Po	ortola Pkwy		Gle	nn Ranch	Rd	Gler	ın Ranch	Rd	
	N	ORTHBOU	ND	SC	OUTHBOUN	ID	E	ASTBOUN	D	W	ESTBOUN	ID	
LANES:	NL 2	NT 3	NR 1	SL 2	ST 3	SR	EL 1	ET 2	ER	WL	WΤ	WR	TOTAL.
LANLS.	2	3	1	2	3	1	1	2	0	2	2	1	
7:00 AM	17	268	65	51	72	14	15	3	19	62	17	1 1 8	721
7:15 AM	25	269	76	65	114	6	18	2	24	69	22	135	825
7:30 AM	21	281	71	80	195	9	25	2	11	74	7	169	945
7:45 AM	40	435	92	85	197	17	16	5	13	96	10	192	1198
8:00 AM	43	441	92	93	112	10	22	3	8	80	17	161	1082
8:15 AM	35	323	64	66	105	22	17	10	6	63	13	114	838
8:30 AM	45	313	65	68	130	22	15	3	7	28	12	126	834
8:45 AM	31	255	60	57	86	21	15	9	4	45	9	113	705
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES :	257	2585	585	565	1011	121	143	37	92	517	107	1128	7148
APPROACH %'s:	7.50%	75.43%	17.07%	33.29%	59.58%	7.13%	52.57%	13.60%	33.82%	29.51%	6,11%	64.38%	
PEAK HR START TUME ET	730	AM See				11.5					inima sino and a		TOTAL
PEAK HR VOL	139	1480	319	324	609	58	80	20	38	313	47	636	4063
PEAK HR FACTOR :		0.841			0.829			0.908			0:836		0.848

National Data & Surveying Services

Project ID: CA11_1071_003

Day: TUESDAY

City: City of Silverado

Date: 5/24/2011

City:	City of Silv	rcrado				PI	м				Date:	3/24/2011	L
NS/EW Streets:	P	ortola Pkw	Y	Po	ortola Pkwy		Gle	nn Ranch	Rd	Gler	in Ranch	Rď	
	N	ORTHBOU	ND	SO	OUTHBOUN	ID	E	ASTBOUN	D	W	ESTBOUN	ID	
LANIEC.	NL	NT	NR	SL 2	ST	SR	EL.	ΕT	ER	WL	WΤ	WR	TOTAL
LANES:	2	3	1	2	3	1	1	2	0	2	2	1	
4:00 PM	11	207	35	159	317	21	13	9	18	67	8	114	979
4:15 PM	12	193	35	127	279	15	20	5	12	53	4	99	854
4:30 PM	19	193	26	145	329	26	20	12	14	82	4	104	974
4:45 PM	12	217	39	170	330	10	13	7	22	51	4	95	970
5:00 PM	14	153	51	144	426	22	29	7	29	97	5	117	1094
5:15 PM	10	222	68	184	439	23	24	9	22	89	10	135	1235
5:30 PM	14	224	45	169	420	19	17	7	10	82	2	107	1116
5:45 PM	12	253	45	174	352	12	16	5	19	67	10	112	1077
	NL.	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES:	104	1662	344	1272	2892	148	152	61	146	588	47	883	8299
APPROACH %'s:	4.93%	78.77%	16.30%	29.50%	67.07%	3.43%	42.34%	16.99%	40.67%	38.74%	3.10%	58.17%	l
EPEAK HRISTART TIME	500	PM:	i dir. Tabir			MA W				Yazey Edis			TOTAL
PEAK HR VOL !	50	852	±209	671	1637	76	86	28	80.	335	27==	471	4522
PEAK HR FACTOR (0.896			0.923			0.746			0.890		0.915

National Data & Surveying Services

Project ID: CA11_1071_004

Day: TUESDAY

City: City of Silverado

Date: 5/24/2011

City.	City of Silv	rerado				Al	м				Date:	5/24/2011	
NS/EW Streets:	PC	ortola Pkwy		e Po	ortola Pkw	的 就是		SR-241			SR-241		
	NO	ORTHBOU	1D	SC	OUTHBOU	VD	E	ASTBOUN	D	W	ESTBOUN	D	
LANEC	NL	МТ	NR	SL	ST	SR	EL	ΕT	ER	WL	WΤ	WR	TOTAL
LANES:	2	3	0	2	2	0	1	0	1	1	0	1	
7:00 AM	107	234	3	17	88	64	10		22	9		107	661
7:15 AM	91	226	2	44	117	53	26		20	12		116	707
7:30 AM	111	221	6	38	182	50	29		32	18		126	813
7:45 AM	87	383	9	70	186	60	40		40	21		180	1076
8:00 AM	91	323	6	35	110	50	39		21	17		177	869
8:15 AM	98	269	6	35	107	46	23		26	19		165	794
8:30 AM	92	247	3	32	102	28	36		18	16		106	680
8:45 AM	61	221	7	26	92	30	27		23	14		107	608
	NL	NT	NR	SL	ST	SR	EL	ΕΓ	ER	WL.	WT	WR	TOTAL
TOTAL VOLUMES:		2124	42	297	984	381	230	0	202	126	0	1084	6208
APPROACH %'s:	25.41%	73.14%	1.45%	17.87%	59.21%	22.92%	53.24%	0.00%	46.76%	10.41%	0.00%	89.59%	
PEAKHRISTARTETIME	730	AM											TOTAL
PEAK HR VOLT	387	-1196	27	178	585	206	1312.0	0	119	75	n n	648	3552
PEAK HR FACTOR		±0.840			0.767			0.781			0.899 =		0.825

National Data & Surveying Services

Project ID: CA11_1071_004

Day: TUESDAY

City: City of Silverado

Date: 5/24/2011

City	City Of Silv					Þ	м				Date:	3/24/2011	•
NS/EW Streets:	n si p	ortoja Pkw		Po	ortola Pkwy	/作 遵		SR-241			SR-241-		
	N	ORTHBOUI	VD	SC	OUTHBOUN	ID	E	ASTBOUN	D	W	ESTBOUN	ID	
LANES:	NL 2	NT 3	NR 0	SL 2	ST 2	SR 0	EL 1	ET 0	ER 1	WL 1	WT 0	WR 1	TOTAL
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM	33 32 36 26 33 40 29	183 170 181 192 151 190 199	8 11 4 7 12 11 8	95 88 83 122 135 158 118	252 268 306 283 378 393 353	42 27 36 20 44 36 44	15 20 15 30 36 39 35	<u> </u>	65 58 64 65 77 98 92	13 11 10 19 13 14		47 58 33 54 51 53	753 743 768 818 930 1032 952
5:45 PM TOTAL VOLUMES : APPROACH %'s :	35 NL 264 14.43%	224 NT 1490 81.42%	15 NR 76 4.15%	SL 933 24.86%	ST 2546 67.84%	25 SR 274 7.30%	28 EL 218 26.36%	ET 0 0.00%	90 ER 609 73.64%	WL 111 21.64%	WT 0 0.00%	49 WR 402 78.36%	927 TOTAL 6923
PEAK HR START TIMES!	±# ₫ ≣ 5 00	PM 🖅 🚈											ELOTAL
PEAK HR VOL	137	764	46	545	1437	149	138	0	357	58	0	210	3841
PEAK HR FACTOR		0.864			0.908	明 事		0,903			0.905		€ 0:930

National Data & Surveying Services

Project ID: CA11_1084_001

Day: WEDNESDAY

City: City of Silverado

Date: 6/8/2011

-						A	M						
NS/EW Streets:	Santi	ago Canyo	n Rd	Santi	ago Canyo	n Rd	Mod	ieska Grad	e Rd	Modje	eska Grade	Rd	
	N	ORTHBOU	I D	S	OUTHBOUN	1D	And a China College	EASTBOUN	1D	W	/ESTBOUN	D	
LANES:	NL O	NT 1	NR 0	SL 0	ST 1	SR 0	EL 0	EŤ 0	ER 0	WL 0	WT 1	WR 0	TOTAL
7:00 AM 7:15 AM 7:30 AM 7:45 AM 8:00 AM 8:15 AM 8:30 AM 8:45 AM		62 92 82 64 84 68 41 36	1 1 5 2 2 1	0 0 0 0 0 0 1	51 66 85 75 66 52 71 62	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				7 10 9 5 4 7			121 169 181 146 156 129
TOTAL VOLUMES : APPROACH %'s :	NL 0 0.00%	NT 529 97.06%	NR 16 2.94%	SL 1 0.19%	ST 528 99.81%	SR 0 0.00%	EL 0 #DIV/0!	ET 0 #DIV/0!	ER 0 #DIV/0!	WL 52 100.00%	WT 0 0.00%	WR 0 0.00%	104 TOTAL 1126
PEAK HR START TIME	715	AM											TOTAL
PEAK HR VOL :	Ö	322	10	0	292	0	0	0	0	28	0	0	652
PEAK HR FACTOR :		0.892			0.859		2 1	0.000			0.700		0.901

National Data & Surveying Services

Project ID: CA11_1084_001

Day: WEDNESDAY

City: City of Silverado

Date: 6/8/2011

_						P	М				Date:	6/8/2011	
NS/EW Streets:	Sant	ago Canyo	n Rd	Sant	ago Canyo	a de la companya della companya della companya de la companya della companya dell	美国建筑	jeska Grad	le Rd	Modj	eska Grad	e Rd	
	N	ORTHBOU	ND	Š	OUTHBOU	VD		EASTBOU	VD	V	VESTBOUN	I D	
LANES:	NL 0	NT 1	NR 0	SL 0	ST 1	SR 0	EL 0	ET 0	ER 0	WL 0	WT 1	WR 0	TOTAL
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM		76 99 88 93 82 114 87 78	5 4 6 10 11 8 9	0 0 0 0 1 1 0	49 70 75 68 87 73 98 87					3 6 4 4 2 5 5		1 1 0 0 2 0 0	134 180 173 175 185 201 199 174
TOTAL VOLUMES : APPROACH %'s :	NL 0 0.00%	NT 717 92.52%	NR 58 7.48%	SL 3 0.49%	ST 607 99.51%	SR 0 0.00%	EL 0 #DIV/0!	ET 0 #DIV/0!	ER 0 #DIV/0!	WL 32 88.89%	WT 0 0.00%	WR 4 11.11%	TOTAL 1421
PEAK HRISTART TIMES. PEAK HR VOLES PEAK HR FACTORS.	10 ^L	276 376	38		326 0,837	0	0.7	0:-		16	ALC: ALC:	2	TOTAL 760

National Data & Surveying Services

Project ID: CA11_1071_001

Day: TUESDAY

City: City of Silverado

Date: 5/24/2011

•	City of Silv					A	М				Date:	3/24/2013	•
NS/EW Streets:	El Toro Ri	d/Santiago Rd	.Canyon	El Toro R	d/Santiago Rd	Canyon	Live	Oak Canyo	n Rd	Live 0	n Rd		
	NORTHBOUND				OUTHBOU			EASTBOUND			WESTBOUND		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL.	WT	WR	TOTAL
LANES:	0	1	0	1	1	0	0	0	0	0	1	0	
7:00 AM		43	7	10	53					12	 	19	144
7:15 AM		56	5	4	73					15		24	177
7:30 AM		53	13	10	85					23		11	195
7:45 AM		45	21	9	97					23		12	207
8:00 AM		48	16	18	61					11		19	173
8:15 AM		43	8	9	62					25		18	165
8:30 AM		37	15	10 9	49					16		5	132
8:45 AM		26	10	9	49					23		13	130
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES :	0	351	,95	79	529	0	0	0	0	148	0	121	1323
APPROACH %'s:	0.00%	78.70%	21.30%	12.99%	87.01%	0.00%	#DIV/0!	#DIV/0!	#DIV/0!	55.02%	0.00%	44.98%	l
PEAK HR START TIME	715	AM :							vat vate				≟TOTAL
											78. The Paris		
PEAK HR VOL (0	202	55	j 41	316	(0	0.5	0		72	. 0	66	752
PEAK HR FACTOR V		0.973			0.842			0:000			0.885		0.908

National Data & Surveying Services

Project ID: CA11_1071_001

Day: TUESDAY

City: City of Silverado

Date: 5/24/2011

City:	City of Silv	rerauo				Р	М	Date: 5/24/2011					
NS/EW Streets:	El Toro R	d/Santlago Rd		El Toro R	d/Santiago Rd		Live	Oak Canyo	n Rd .	Live C	n Rd		
	NORTHBOUND				OUTHBOU		EASTBOUND			WESTBOUND			
LANEC.	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WΤ	WR	TOTAL
LANES:	0	1	0	1	1	0	0	0	0	0	1	0	
4:00 PM	•	85	25	12	51					22		18	213
4:15 PM		88	31	10	37					12		12	190
4:30 PM		77	21	10	42					13		7	170
4:45 PM		99	33	15	53					15		19	234
5:00 PM		90	29	24	53					15		16	227
5:15 PM		92	33	18	59					16		13	231
5:30 PM		96	29	25	46					15		13	224
5:45 PM		76	21	32	55					18		12	214
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES:	0	703	222	146	396	0	0	0	0	126	0	110	1703
APPROACH %'s:	0.00%	76.00%	24.00%	26.94%	73.06%	0.00%	#DIV/0!	#DIV/0!	#DIV/0!	53.39%	0.00%	46.61%	l I
PEAK HRISTARIE TIME	445	PM 🕾 🚊											≝TOTAL :
PEAK HR VOL	0.2	377	124	82	211	in el	0	0	0	61	0	61	916
						1000							210
PEAK HR FACTOR :	Tieffene	0.949			* 0.951	柳潭		0.000			0.897		0.979

National Data & Surveying Services

Project ID: CA11_1071_002

Day: TUESDAY

City: City of Silverado

Date: 5/24/2011

Oity.	City of Silv	Cidao				Al	М				Dutci	3/2-1/2011	•
NS/EW Streets:		Toro Rd			l Toro Rd		Glei	n Ranch	Rd	Gle	nn Ranch	Rd	
	No	ORTHBOUN	1D	SOUTHBOUND			E	EASTBOUND			WESTBOUND		
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
LANES:	1	1	0	0	2	0	1	0	1	0	0	0	
7:00 AM	22	56			71	36	13		26				224
7:15 AM	30	60			108	33	9		34				274
7:30 AM	69	70			183	43	11		64				440
7:45 AM	98	70			156	73	19		47				463
8:00 AM	31	80			106	49	11		49				326
8:15 AM	22	55			71	48	17		22				235
8:30 AM	24	64			69	41	15		29				242
8:45 AM	29	41			69	43	11		27				220
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WĽ	WT	WR	TOTAL
TOTAL VOLUMES:		496	0	0	833	366	106	0	298	0	0	0	2424
APPROACH %'s:	39.59%	60.41%	0.00%	0.00%	69.47%	30.53%	26.24%	0.00%	73.76%	#DIV/0!	#DIV/0!	#DIV/0!	
PEAKHRISTARTETIME	715	AM		15.507				charge and					TOTAL
PEAK HR VOL	228	280	n l	ne i	5 553	108	50	n	104	0	0	0	1503
PEAK HR FACTOR		0,756			=0.820	77 78 78		0.813			0.000=		0:812

National Data & Surveying Services

Project ID: CA11_1071_002

Day: TUESDAY

City: City of Silverado

Date: 5/24/2011

City	City Of Silv					PI	М				pace.	3/27/2011	L.
NS/EW Streets:		l Toro Rd			l Tora Rd		Gler	n Ranch	Rd	Gje			
	N	ORTHBOU	ND	SOUTHBOUND			E	EASTBOUND			WESTBOUND		
	NL	NT	NR	SL	ST	SR	EL	ΕT	ER	WL	WT	WR	TOTAL
LANES:	1	1	0	0	2	0	1	0	1	0	0	0	
4:00 PM	20	102			89	16	50		33				310
4:15 PM	30	110			57	14	43		26				280
4:30 PM	28	101			74	12	58		37				310
4:45 PM	34	122			87	17	50		37				347
5:00 PM	29	113			74	7	65		45				333
5:15 PM	37	128			88	31	76		46				406
5:30 PM	65	118			92	12	56		43				386
5:45 PM	47	94			88	31	49		37				346
-	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES :	290	888	0	0	649	140	447	0	304	0	0	0	2718
APPROACH %'s:		75.38%	0,00%	0.00%	82.26%	17.74%	59.52%	0.00%	40.48%	#DIV/0!	#DIV/0!	#DIV/0!	
PEAK HR START TIME	445	PM -	Talas de la compansión de	Ario Angri	en e	de (Baldi), visto							TOTAL
													The second secon
PEAK HR VOL 1	165	481	0 [0	341	67	247	0.0	171	0	0.0	Di I	- 1472
PEAK HR FACTOR :		0.883			10.857			0.857			0.000		0.906

National Data & Surveying Services

Project ID: CA11_1071_006

Day: TUESDAY

City: City of Silverado

Date: 5/24/2011

Cityt	City of Silve			AM	1		Date: 5/24/2011						
NS/EW Streets:				Marguerite Pkwy/Saddleback				l Toro Rd					
		RTHBOU		SOUTHBOUND			EASTBOUND			WESTBOUND			
LANES:	NL 1.5	NT 1.5	NR 1	SL 1	ST 1.5	SR 1.5	EL 2	ET 2	ER	WL 2	WT 2	WR 0	TOTAL
LAINES:	1.5	1.5	1	1	1.5	1.5	2	2	1	2	2	U	
7:00 AM	55	1	52	0	0	0	0	28	14	72	52	2	276
7:15 AM	64	2	58	1	0	0	0	27	20	90	70	0	332
7:30 AM	84	2	70	0	3	3	1	31	32	104	138	1	469
7:45 AM	88	2	70	0	3	0	0	43	46	155	95	0	502
8:00 AM	62	1	59	0	1	0	1	34	22	95	84	1	360
8:15 AM	72	0	66	0	0	0	0	27	15	82	68	1	331
8:30 AM	60	2	50	0	0	0	0	33	21	53	46	1	266
8:45 AM	48	5	49	0	1	0	0	32	19	55	54	6	269
-	NL	NT	NR	SŁ	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES :	533	15	474	1	8	3	2	255	189	706	607	12	2805
APPROACH %'s:	52.15%	1.47%	46.38%	8.33%	66.67%	25.00%	0.45%	57.17%	42.38%	53.28%	45.81%	0.91%	1
PEAKHRISTARTITIME	2-1- -715 -7	Magazatan Magazatan	ia a jiya	S-32-7-11-1									TOTAL
PEAK HR VOL	298	. 7	257	1	7 -		12	135	120	444	387	-2	1663
PEAK HR FACTOR F		0.878=			0.458			- 0.722			0.833		0.828

Intersection Turning Movement Prepared by:

National Data & Surveying Services

Project ID: CA11_1071_006

Day: TUESDAY

City: City of Silverado

Date: 5/24/2011

-	City of Silv					PM	1				Date: :	5/24/2011	-
NS/EW Streets:	Marguerite	e Pkwy/Sa hurch Rd	ddleback	Marguerit	e Pkwy/Sa Shurch Rd	ddleback	+	l Toro Rd			J.Toro Rd		
		RTHBOU			OUTHBOU		E	ASTBOUN	D	۷	/ESTBOUN	D	
	NL	NT	NR	SL	ST	SR	EL	ET	ER	WL	WΤ	WR	TOTAL
LANES:	1.5	1.5	1	1	1.5	1,5	2	2	1	2	2	0	
4:00 PM	25	9	92	3	10	6	4	63	42	70	47	2	373
4:15 PM	18	0	102	3	7	0	0	57	53	75	37	2	354
4:30 PM	34	4	96	0	3	1	0	69	49	65	48	1	370
4:45 PM	29	6	93	0	6	1	1	79	59	91	49	0	414
5:00 PM	32	4	97	3	5	3	1	65	68	87	35	1	401
5:15 PM	31	13	110	5	6	4	0	79	75	93	51	1	468
5:30 PM	33	8	135	4	15	5	2	71	80	88	40	5	486
5:45 PM	42	11	89	3	15	4	4	76	76	84	51	4	459
	NL.	NT	NR	SL	ST	SR	EL	ET	ER	WL	WT	WR	TOTAL
TOTAL VOLUMES:	244	55	814	21	67	24	12	559	502	653	358	16	3325
APPROACH %'s:	21.92%	4.94%	73.14%	18.75%	59.82%	21.43%	1.12%	52.10%	46.78%	63.58%	34.86%	1.56%	į
PEAKHRSTARIETIME	500	M				7 (14)							≝TOTAL:
PEAK HR VOL :	138	36	431	15	41	16	7.5	291	299	352	177		1814
PEAK HR FACTOR 1		0.859			0.750			0.957			0.931		0.933

CONTROL: Signalized

Intersection Turning Movement Prepared by:

National Data & Surveying Services

Project ID: CA11_1071_005

Day: TUESDAY

City: City of Silverado

Date: 5/24/2011

City.	City of Silv	rerado				A	М				Date.	3/24/2011	
NS/EW Streets:		wy/Santa N Pkwy			wy/Santa l Pkwy			l-Toro Rd			l Toro Rd		
		ORTHBOUN			OUTHBOU		E	ASTBOUN	D	٧	VESTBOUN	ID	
LANES:	NL 2	NT 4	NR 0	SL 2	ST 3	SR 1	EL 1	ET 3	ER 1	WL 1	WT 3	WR 1	TOTAL
7:00 AM 7:15 AM	106 112	239 228	6 3	10 4	82 110	46 47	48 53	24 26	66 85	1 6	113 101	35 34	776 809
7:30 AM 7:45 AM	135 154	239 385	8 19	8	124 198	51 75	47 88	39 48	98 119	13 14	191 158	39 54	992 1320
8:00 AM 8:15 AM	150 162	304 281	4 2	7 3	79 67	60 68	94 68	62 27	78 88	6 3	112 102	42 40	998 911
8:30 AM 8:45 AM	103 124	236 240	7 4	11 11	77 91	45 42	68 80	37 31	64 74	3	96 71	38 35	785 806
TOTAL VOLUMES	NL 1046	NT 2152	NR 53	SL 62	ST	SR	EL.	ET	ER	WL.	WT	WR	TOTAL
TOTAL VOLUMES ; APPROACH %'s ;		66.20%	1.63%	4.68%	828 62.54%	434 32.78%	546 36.11%	294 19.44%	672 44.44%	49 3.74%	944 72.06%	317 24.20%	7397
PEAK(HR STARTE) IME	730	AM								s electric			TOTAL
PEAK HR VOL :	601	1209	33.	26	468	254	297	176	383	36	563	175	4221
PEAK HR FACTOR #		0.826			0:665			0.839			0.796		0.799

CONTROL: Signalized

Intersection Turning Movement Prepared by: National Data & Surveying Services

Project ID: CA11_1071_005

Day: TUESDAY

City: City of Silverado

Date: 5/24/2011

City:	City of Silv	rerado				P	м				Date:	5/24/2011	-
NS/EW Streets:		wy/Santa I ■Pkwy			wy/Santa Pkwy			l-Toro Rd			l=Toro Rd		
		ORTHBOU			OUTHBOU		E	ASTBOUN	D	V	/ESTBOUN	ID	·
LANES:	NL 2	NT 4	NR 0	SL 2	ST 3	SR 1	EL 1	ET 3	ER 1	WL 1	WT 3	WR 1	TOTAL
4:00 PM 4:15 PM 4:30 PM 4:45 PM 5:00 PM 5:15 PM 5:30 PM 5:45 PM	87 70 75 92 94 126 89 93	143 185 148 143 122 167 191	11 11 5 13 5 17 2 6	34 18 38 42 41 62 52 52	260 264 215 256 279 313 281 281	63 55 80 87 97 115 102 104	55 39 61 58 53 53 68 93	66 84 93 92 100 97 108 102	102 129 134 144 149 179 156 169	5 1 3 5 6 4 4 6	63 45 51 57 48 59 51 65	28 19 20 31 24 27 27 29	917 920 923 1020 1018 1219 1131 1192
TOTAL VOLUMES : APPROACH %'s :		NT 1291 61.86%	NR 70 3.35%	SL 339 10.62%	ST 2149 67.35%	SR 703 22.03%	EL 480 20.13%	ET 742 31.12%	ER 1162 48.74%	WL 34 5.01%	WT 439 64.75%	WR 205 30.24%	•
PEAKHR-STARTETIME PEAKHR-VOL PEAKHR-FACTOR	402	PM 672 0:890			≟1154 ≟0:908			-407 -0:911	653	20	223 0.875		4560 0,935

CONTROL : Signalized

24 Hour 2-Way Average Daily Traffic Counts (ADTs)

VOLUME

Santiago Canyon Rd N/o Ridgeline Rd

Day: Tuesday Date: 5/24/2011

	D.	AILY 1	OTA	ALS		NB	ŞB	EB		WB						To	
					. 1	3,889	3,608	0		0			1 11 1			7,4	197
AM Period	NB		SB		EB	WB	TOTAL	PIVI Period	NB		SB -		ЕВ	WB		TO	ΓAL
00:00	0		2				2	12:00	40		29					69	-
00:15	1		2				3	12:15	35		29				į	- 64	-
00:30	2		3				5	12:30	39		36				- 1	75	
00:45	3	6	0	7			3 13	12:45	36	150	42	136			i	78	286
01:00	3		1			-	4	13:00	43		45					88	: "
01:15	3		2				5	13:15	38		37				- 1	75	1
01:30	6		0				6	13:30	50		43				1	93	
01:45	3	15	0	3			3 18	13:45	36	167	49	174	_			85	341
02:00	2		2.				4 4 10 10 1	14:00	43		38			· · · · · · · · · · · · · · · · · · ·		81	
02:15	2		1				3	14:15	52		36					88	
02:30	1		1				2	14:30	57		51					108	****
02:45	1	6	3	7		· <u></u>	4 13	14:45	_73	225	56	181				129	406
03:00	2		1				3.	15:00	68		36					104	1.0
03:15	0		2				2	15:15	83		52					135	
03:30	2		2				4	15:30	108		52					160	
03:45	1	5	6	11			.7 .16	15:45	81	340	55	195				136	535
04:00	4		5				9	16:00	116		67					183	
04:15	2		7				9	16:15	114		53					167	
04:30	2		12				14	16:30	97		59					156	
04:45	9	17	15	39			24 56	16:45	136	463	78	257				214	720
05:00	14		11				25	17:00	114		84					198	
05:15	24		16				40	17:15	122		78					200	
05:30	27		31				58	17:30	114		89					203	1
05:45	39	104	35	93			74 197	17:45	95	445	107	358				202	803
06:00	43		2 5				68	18:00	93		114					207	1.
06:15	35		59				94	18:15	58		84					142	
06:30	71		52				123	18:30	75		63					138	• •
06:45	83	232	50	186			133 418	18:45	53	279	54	315				107	594
07:00	84		72				156	19:00	37		44					81	articl
07:15	116		82				198	19:15	45		48					93 .	- 15 (15)
07:30	87	262	103	250			190	19:30	30		48					78	
07:45	76	363	101	358			177 721	19:45	37	149	35	175				72	324
08:00	89		79				168	20:00	33		50					83	
08:15	75		80				155	20:15	29		53					82	
08:30	41	356	62	202			103	20:30	27		42					69	
08:45	51	256	62	283			113 539	20:45	22	111	44	189				66	300
09:00 09:15	33		54 4E				87	21:00	27		42				l	69	
09:15	43 23		45				88	21:15 21:30	30		26				l	56	
09:45		127	42 40	101			65. 200		11	oc.	31	117			l	42	100
10:00	_28 39	12/	35	181			68 308 74	21:45 22:00	18	86	14	113			<u></u>	32	199
10:00	33		35 40				73	22:00	13		13				l	26	
10:15	28		40 34				62	22:30	22		11				l	33	
10:30	29	129	34 27	136			56265	22:30	23 10	68	15 7	6.0			l	38	44.4
11:00	34	123	36	130			70	23:00	8	08	10	46				17	114
11:15	27		28				55	23:15	4		10 8				l	18 12	
11:15	26		26				52	23:30	5		8 5				l	10	Sign of
11:45	34	121	49	139			83 260	23:45	8	25	3	26			l	10	51
TOTALS	34 20. AZTI	1381	- 42	1443		e wilipatietewa	2824	TOTALS		2508	g valide	2000 1 200	g 44 g 3 J 3	vayet a 150 tils	747, 53	<u>- 11</u>	11.
		1 1251 11						1		771 7.1		2165					4673
SPLIT %	5130	48.9%	100	51.1%	<u> </u>		37.7%	SPLIT %		53.7%	ai, i Xaeti	46.3%			. <u></u>		62.3%

Fig. 1	DAILY TOT	AIC	NB	SB		EB	WB					Tota!
	DAILT TOT	ALJ	3,889	3,608		0	0	•	 <u></u>			7,497
AM Peak Hour	06:45	07:15	 	1 142 F F	07:15	PM Peak Hour	16:45		17:30			16:45
AM Pk Volume	370	365			733	PM Pk Volume	486		394			815
Pk Hr Factor	0.797	0.886			0.926	Pk Hr Factor	0.893		0.864			0.952
7 - 9 Volume	619	641	 		1260	4 - 6 Volume	908	: 1	615		·	1523
7 - 9 Peak Hour	07.15	07:15			07:15	4 - 6 Peak Hour	16:45	1 * 1 y	17:00			16:45
7 - 9 Pk Volume	368	365	 	ang ji terdi	733	4 - 6 Pk Volume	486		358		5-2	815
Pk Hr-Factor	0.793	0,886	 	w Ster	0.926	Pk Hr Factor	0,893	e, -vi. 1	0.836	and a manager Mark	The second	0.952

VOLUME

Santiago Canyon Rd/El Toro Rd N/o Live Oak Canyon Rd

Day: Tuesday Date: 5/24/2011

		AILY 1	OT/	vi e	NB	SB	ЕВ		WB		4, 1		Total
	بن	ALLI	-	1LJ	3,397	3,327	0		0				6,724
AM Period	ΝB		SB	EB	WB	TOTAL	PM Period	NB		SB	EB	WB	TOTAL
00:00	0		1			1	12:00	37		29	•••		66
00:15	1		1			2	12:15	36		26			62
00:30	3	_	2			5	12:30	43		37			80
00:45	2	6	1	5		3 11	12:45	33	149	36	128		69 277
01:00	2		2			4	13:00	36		45			81
01:15 01:30	3 5		0 1			3	13:15 13:30	37		39			76
01:30	2	12	1	4		6 3 16	13:45	49	157	41 47	173		90
02:00	1	12	0			1	14:00	35 41	157	32	172		82 329 73
02:00	1		1			2	14:15	55		31			. 86 : 86
02:30	1		ō			1	14:30	50		48			98
02:45	1	4	2	3		3 7	14:45	60	206	62	173		122 379
03:00	0		0	<u> </u>	· ·-	0	15:00	58	<u> </u>	52	173		110
03:15	ō		1			î	15:15	92		50			142
03:30	Õ		1			l i	15:30	94		58			152
03:45	2	2	3	5		5 7	15:45	75	319	50	210		125 529
04:00	2		3			5	16:00	98		66			164
04:15	2		4			6	16:15	99		47			146
04:30	2		5			1 7	16:30	81		50			131
04:45	7	13	12	24		19 37	16:45	115	393	64	227		179 620
05:00	5		11			16	17:00	113	<u>-</u>	80			193
05:15	16		12			28	17:15	107		75			182
05:30	14		18			-32	17:30	108		72			180
05:45	20	55	28	69		48 124	17:45	86	414	84	311		170 725
06:00	31		20			51	18:00	88		108			196
06:15	27		46			73	18:15	53		84			137
06:30	53		43			- 96	18:30	73		58			131
06:45	47	158	46	155		93 313	18:45	51	265	46	296		97 561
07:00	64		63			127	19:00	43		45			88
07:15	77		75			152	19:15	49		42			91
07:30	64		104			168	19:30	26		41			-67
07:45	59	264	100	342		159 606	19:45	25	143	31	159		56 302
08:00	67		75			142	20:00	29		51			80
08:15	59		69			128	20:15	28		43			71
08:30	40	205	59	265		99	20:30	23	400	42	476		65
08:45	39	205	62	265		101 470	20:45	23	103	40	176		63 279
09:00	31 37		54			85	21:00 21:15	28		35			63
09:15 09:30	37 25		44 34			81 59	21:15	30		23			53
09:30 09:45	25 24	117	34 41	173		65 - 290	21:30	14 20	92	23 9	0n		37 29 182
10:00	39	11/	35	1/3		74	22:00	12	92	11	90		29 182 23
10:00	28		38			66	22:15	22		10			
10:30	31		36			67	22:30	17		10			32 27
10:30	21	119	28	137		49 256	22:45	9	60	7	38		16 98
11:00	33	11.7	38	40/		71	23:00	9	UU.	6			15 58
11:15	27		25			52	23:15	5		6			11
11:30	23		25			48	23:30	3		3			6
11:45	32	11 5	59	147		91 262	23:45	9	26	3	18		12 44
TOTALS		1070		1329		2399	TOTALS	(34 tr)=	2327		1998		4325
SPLIT %		44.6%		55.4%		35.7%	SPLIT %		53.8%	·	45.2%		64.3%

	DAILY TOT	ALC	NB	SB	EB	WB		Total
	DAILTIO	ALS .	3,397	3,327	0	0		6,724
AM Peak Hour	07:15	07:15		07:15	PM Peak Hour	16:45	17:30	16:45
AM Pk Volume	267	354		621	PM Pk Volume	443	348	734
Pk Hr Factor	0.867	0.851		0.924	Pk Hr Factor	0.963	0.806	0.951
7 - 9 Volume	469	607	Contract of	1076	4 - 6 Volume	807	-1 538	1345
7 - 9 Peak Hour	07:15	07:15		07:15	4 - 6 Peak Hour	16:45	17:00	16:45
7 - 9 Pk Volume	267	354	P. 17. 25.	621	4 - 6 Pk Volume	443	311	734
Pk Hr Factor	0.867	0.851	ard, viji	0.924	Pk Hr Factor	0.963	0,926	0.951

VOLUME

Live Oak Canyon Rd E/o Santiago Canyon Rd/El Toro Rd

Day: Tuesday Date: 5/24/2011

	DAILY TOTA	NIS .		NB		SB	EB	WB					To	
	DAIL! TOTA	169		0		0	1,629	1,576					3,2	05
AM Period	NB SB	EB		WB	• .	TOTAL	PM Period	NB	SB EB		WB		TOT	ΓAL
00:00		3		1		4	12:00		25	···········	15		40	
00:15	İ	4		3		7	12:15		19		29		48	
00:30		1		1		2	12:30		17		31		48	1 - 1
00:45		0	8	1	6	1 14	12:45	_	21	82	15	90	36	172
01:00		2		2		4	13:00		22		24		46	
01:15		1		0		1 1	13:15		25		21		46	
01:30		1		1		2	13:30		30		32		62	
01:45		0	. 4	3	6	3 10	13:45		31	108	14	91	45	199
02:00		0		0		0	14:00		22		29		51	
02:15		0		0		0 -	14:15		19		24		43	4. 5.7.
02:30		0		0		0	14:30		31		19		50	S + 1
02:45		0		. 2	2	2 2	14:45		35	107	44	116	79	223
03:00		0		0		0	15:00		30		25		55	7
03:15		0		0		0	15:15		35		25		60	
03:30		1		2		_ [*] 3 *-	15:30		. 32		36		68	
03:45		. 0	1	1	3	1 4	15:45		31	128	23	109	54	237
04:00		, 1		0		1 1	16:00		36		43		79	
04:15		0		0		0	16:15		39		27		66	. 1
04:30		1		3		4	16:30		31		20		51	
04:45		0	2	1	4	1 6	16:45		48	154	37	127	85	.281
05:00		1		2		3	17:00		53		26		79	
05:15		3		8		11	17:15		51		28		79	1.1
05:30		6		4		10	17:30		54		28		82	
05:45		5	15	. 8	22	13 37	17:45		. 53	211	29	111	82	322
06:00		6		9		15	18:00		50		37		87	
06:15		7		19		26	18:15		43		12		55	.*
06:30		15		27		42	18:30		31		33		64	. 1 1
06:45		10	38	23	78	.33 116	18:45		32	156	24	106	56.	262
07:00		16		30		46	19:00		. 34		33		67	
07:15		15		41		56	19:15		22		18		40	
07:30		21		34		55	19:30		24		21		45 -	- 4
07:45		29	81	35	140	64 221	19:45		16	96	18	90	34	186
08:00		29		30		59	20:00		17		20		37	
08:15		17		40		57	20:15		16		16		32	
08:30		25		22		47	20:30		10		16		26	:
08:45		20	91	34	126	54 217	20:45		11	54	17	69	28	123
09:00		15		16		31	21:00		12		11		23	- 1
09:15		18		23		41	21:15		18		12		30	
09:30		16	C -2	17	7-	33	21:30		17		7		24	1
09:45		13	62	19	75	32 137	21:45		<u> 16</u>	63	. 7	37	23	100
10:00		13		16		-29	22:00		7		7	i	14	
10:15		10		12		22	22:15		7		6		13	1.0
10:30		17		13	F-3	30	22:30		5		4		9	
10:45 11:00		15	55	11	52	26 107	22:45		4	23	6	_23		46
11:00		24		19		43	23:00		4		2		6	
11:15		22 13		13 25		35	23:15		5		5		10	
11:45		13 15	74		90	38	23:30		. 3	4.0	2		-5	
TOTALS		15	74 431	23	80 594	38 154 1025	23:45 TOTALS		<u> </u>	16 1198	4	13	8	29
 											<u> </u>	982		2180
SPLIT %			42.0%	l	58.0%	32.0%	SPLIT %		<u> </u>	55.0%		45.0%		68.0%

ΠΔ	LY TOTALS	NB	SB		EB	WB		Total
	TO FALS	0	0		1,629 1	,576	Parameter and the second	3,205
AM Peak Hour		07:45	07:00	07:30 PM Pe	ak Hour		17:00 14:4	17:15
AM Pk Volume	en de la companya de	100	140	235 PM Pk	Volume		211 130	330
Pk Hr Factor		0.862	0.854	0.918 Pk Hi	r Factor		0.977 0.739	0.948
7 - 9 Volume		172	266	438 4-6	Volume		365 238	603
7 - 9 Peak Hour		07:45	07:00	07:30 4 - 6 Pe	eak Hour		17:00 16:00	16:45
7 - 9 Pk Volume	allight may f	100	140	235 4 - 6 PI	Volume		211 127	325
Pk Hr Factor	yan dalah dalah	0.862	0.854 (0.918 Pk Hi	Factor		0.977 0.738	0.956

VOLUME

El Toro Rd N/o Glenn Ranch Rd

Day: Tuesday Date: 5/24/2011

	'n	AILY 1	OTA	AI S		NB	SB	EB		WB							tal
		AILI	017	ILO.		5,895	5,700	0		0	,		en e			11,	595
AM Period	NB		SB		EB	WB ·	TOTAL	PIVI Period	NB		SB		ЕВ	WE		то	ΓAL
00:00	8		6				14 -	12:00	75		57					132	- :
00:15	9		4				13	12:15	65		59					124	
00:30	8		5				13	12:30	75		76					151	
00:45	8	33	2	17			10 50	12:45	76_	291	56	248				132	539
01:00	5		2				7.0	13:00	68		70					138	
01:15	4		1				./5	13:15	77		70					147	
01:30	8		1	_			9	13:30	70		64					134	
01:45	2	19	1	5			3 24	13:45	78	293	68	272				146	565
02:00	2		2				4	14:00	72		64					136	100
02:15	2		2				4	14:15	100		83					183	
02:30 02:45	1		1				2 47	14:30	79	250	83	224				162	667
03:00	0	8	3	9			7 <u>17</u> 3	14:45 15:00	105	356	101	331				206	687
03:00	0		1					15:00	123		81					204	
03:30	0		3				1. 3	15:30	164 131		85 78					249 209	
03:45	2	2	4	11			6 13	15:45	123	541	78 79	323				209	864
04:00	4	-	4				8 13	16:00	157	341	106	323				263	864
04:15	3		8				111	16:15	151		71					203	
04:30	2		12				14	16:30	156		87					243	
04:45	6	15	21	45			27 60	16:45	169	633	104	368				273	1001
05:00	4		18				22	17:00	181	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	82	200				263	1001
05:15	15		23				38	17:15	195		120					315	100
05:30	15		41				56	17:30	181		101					282	
05:45	18	52	37	119			55 171	17:45	140	697	117	420				25.7	1117
06:00	21		39				60	18:00	158		115	-			•	273	
06:15	30		84				114	18:15	129		105					234	
06:30	51		106				157	18:30	140		97					237	
06:45	54	156	141	370			195 526	18:45	131	558	65	382				196	940
07:00	66		106				172	19:00	117		70	•				.187	
07:15	70		139				209	19:15	84		65					149	1000
07:30	83		223				306	19:30	84		59					143	100
07:45	85	304	232	700			317 1004	19:45	64	349	60	254				124	603
08:00	87		155				242	20:00	77		68					145	
08:15	76		118				194	20:15	64		72					136	
08:30	75 53	201	108	401			183	20:30	65	272	76	277				141	
08:45 09:00	48	291	110 94	491			163 782 142	20:45 21:00	67 68	273	61 51	277				128	550
09:00	51		94 85				136	21:15	66		_					119	3.17
09:30	37		68				105	21:30	53		35 43					101 96	
09:45	35	171	73	320			108 491	21:45	50	237	43 27	156				. 77	393
10:00	50	***	68	<u> </u>			118	22:00	31	231	29	. 100		-		60	333
10:15	48		55				103	22:15	43		12					55	* * * *
10:30	45		52				97	22:30	41		14					55 -	
10:45	42	185	58	233			100 418	22:45	22	137	13	68				35	205
11:00	64		55				119	23:00	17		14					31	
11:15	52		37				89	23:15	17		9					26	
11:30	41		70				111	23:30	14		8					.22	
11:45	_70	227	78	240			148 467	23:45	19	67	10	41				29	108
TOTALS	- 47 -	1463		2560			4023	TOTALS	1	4432	3 T	3140	Taurie e, dati E	\$5 - 1			7572
SPLIT %		36.4%		63.6%			34.7%	SPLIT %		58.5%	2	41.5%				<u> </u>	65.3%

DAILY TOTALS NB SB	EB WB Total
5,895 5,700	0 0 11,595
AM Peak Hour 07:30 07:15 07:15	PM Peak Hour 16:45 17:15
AM Pk Volume 331 749 1074	PM Pk Volume 726 453 1133
Pk Hr Factor 0.951 0.807 0.847	Pk Hr Factor 0.931 0.944 0.899
7 - 9 Volume 595 1191 1786	4 · 6 Volume 1330 788 2118
7 - 9 Peak Hour 07:30 07:15 07:15	4 - 6 Peak Hour 16:45 17:00 16:45
7 - 9 Pk Volume 331 749 1074	4 - 6 Pk Volume 726 420 1133
Pk Hr Factor 0.951 0.807 0.847	Pk Hr Factor 0.931 0.875 0.899

VOLUME

Portola Pkwy S/o Glenn Ranch Rd

Day: Tuesday Date: 5/24/2011

	. п	AILY 1	COT A	ii c		NB	SB	ЕВ		WB						Fotal
		A12-1	016	NLJ	<u> </u>	16,879	16,958	0		. 0					3	3,837
AM Period	NB		ŚВ		EB	WB	TOTAL	PM Period	NB		SB		EB	Wß	7	OTAL
00:00	21		22				43	12:00	246		201				447	,
00:15	11		20				31	12:15	229		203				432	2
00:30	14		19				33	12:30	310		200				510)
00:45	.8	54	28	89			36 143	12:45	309	1094	218	822			527	1916
01:00	5		25				30	13:00	246		224				470)
01:15	10		13				23	13:15	262		247				509	
01:30	8		13				21	13:30	234		250				484	
01:45	6	29	9	60			15 89	13:45	224	966	286	1007			510	
02:00	3		9				12	14:00	252		298				550	
02:15	7		15				22	14:15	249		262				511	
02:30	6		11				17	14:30	215		306				521	
02:45	4	20	8	43			12 63	14:45	257	973	344	1210			:601	
03:00	6		5				11	15:00	253		322				579	
03:15	5		3				8	15:15	339		263				602	
03:30	9		9				18	15:30	261		339				:600	
03:45	25	45	13	30			38 75	15:45	317	1170	307	1231			624	
04:00	24		9				33	16:00	247		375				622	
04:15	24		12				36	16:15	249		367				616	
04:30	19		22				41	16:30	238	4004	419				657	
04:45	47	114	21	64			68 178	16:45	267	1001	424	1585			691	
05:00	49		28				77	17:00	249		554				803	
05:15	45		37				82	17:15	267		606				873	
05:30	80	240	58	201			138	17:30	283		524	2450			807	
05:45	145 108	319	78	201	 		223 520	17:45 18:00	312	1111	466	2150			778	
06:00			68				176		223		476				699	
06:15 06:30	160 194		99 173				259 367	18:15 18:30	238		436				674	
06:30	302	764	197	537			499 1301	18:45	246	943	422 326	1660			668	
07:00	347	704	164	337	 		511	19:00	236 266	943	307	_1000			. 562 : 573	
07:00	364		203				567	19:15	191		258				449	
07:30	372		274				646	19:30	190		269				459	
07:45	600	1683	301	942			901 2625	19:45	192	839	248	1082			440	
08:00	540	1003	205	342			745	20:00	185	033	203	1002			388	
08:15	462		177			*	639	20:15	232		180				412	
08:30	383		171				554	20:30	158		192				350	
08:45	362	1747	153	706			515 2453	20:45	113	688	121	696			234	
09:00	286	+r-1/	138			 	424	21:00	120	000	135	050			255	
09:15	242		145				387	21:15	102		107				209	
09:30	201		133				334	21:30	90		110				200	
09:45	210	939	148	564			358 1503	21:45	97	409	108	460			205	
10:00	204		138			•	342	22:00	58		113				171	
10:15	194		126				320	22:15	80		73				153	
10:30	174		155				329	22:30	42		92				134	
10:45	199	771	165	584			364 1355	22:45	35	215	37	315			72	
11:00	206		171				377	23:00	29		52				81	
11:15	206		191				397	23:15	33		37				70	
11:30	248		211			•	459	23:30	21		37				58	
11:45	222	882	203	776		<u> </u>	425 1658	23:45	20	103	18	144			38	
TOTALS		7367	AV Lock	4596			11963	TOTALS	150 ±2 (.5. 2	9512		12362			. 75 7	21874
SPLIT%		61,6%	i, ar i	38.4%			35.4%	SPLIT %		43.5%	7. 1.	56.5%	1.10			64.6%
	خ نندها					<u> </u>	<u> </u>							<u> </u>		: - : -

	DAILY TOT	TAI C		NB	SB		EB	WB				Total
	DAILTIOT	ALS	1.7	16,879	16,958		Ó	0				33,837
AM Peak Hour	07:45	07:15				07:30	PM Peak Hour	15:00	17:00	7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 		17:00
AM Pk Volume	1985	983				2931	PM Pk Volume	1170	2150			3261
Pk Hr Factor	0.827	0.816		·	<u> </u>	0.813	Pk Hr Factor	0.863	0.887			0.934
7 - 9 Volume	3430	1648				5078	4 - 6 Volume	2112	3735			5847
7 - 9 Peak Hour	07:45	07:15	*		use, singly	07:30	4 - 6 Peak Hour	17:00	17:00	n Sella Meriela		17:00
7 - 9 Pk Volume	1985	983	5 5.6.			2931	4 - 6 Pk Volume	1111	2150			3261
.: Pk-Hr Factor	0,827	0.816				0.813	Pk Hr Factor	0.890	0.887		en fransk 18.	0.934

VOLUME

Portola Pkwy S/o SR-241

Day: Tuesday Date: 5/24/2011

	n	DAILY TOTALS			NB		SB		EB		WB						otal
	<i></i>	AiLI	IOIA	(L.)		15,390	15,982		0		0					31,	372
AM Period	NB		SB		EB	WB	TO	TAL	PM Period	NB		SB		ΞB	WB	ТО	TAL
00:00	21		26				47	S J S S K	12:00	215		228				443	
00:15	10		27				37		12:15	225		229		•		454	
00:30	10		20				: 30		12:30	290		233				523	
00:45	5	46	36	109			41.	155	12:45	275	1005	199	889			474	1894
01:00	3		27				30		13:00	219		230				449	ı
01:15	6		12				18	. 1	13:15	271		251				522	
01:30	8		14				22	1 200	13:30	185		229				414	
01:45	6	23	8	61			14	84	13:45	189	864	263	973			452	1837
02:00	6		10				16		14:00	229		264				493	
02:15	8		17				25		14:15	215		248				463	
02:30	5	22	12	47			17		14:30	206		280	4005			486	المنفد
02:45	3	22	8	47			11	69	14:45	205	855	294	1086			499	1941
03:00 03:15	3 8		7				10	5	15:00 15:15	216		294				510	
03:15	11		5 9				13 20	-12	15:15 15:30	285 226		294 294				579	
03:45	20	42	17	38			37	.80	15:45	230	957	304	1186			520 534	21.62
04:00	29		7				36	ou	16:00	229	937	330	1190			559	2143
04:15	20		10				30	5 T	16:15	210		315				525	
04:30	21		18				39		16:30	201		360				561	
04:45	44	114	26	61			70	175	16:45	215	855	372	1377			587	2232
05:00	60	441	23	- 0.			83	1,0	17:00	205	000	480	13//			685	44.54
05:15	53		27				80		17:15	238		480				718	
05:30	103		43				146	C1944	17:30	249		460				709	•
05:45	134	350	69	162			203	512	17:45	256	948	449	1869			705	2817
06:00	124		61				185		18:00	216		460	1003			676	4047
06:15	164		68				232		18:15	198		417				615	
06:30	226		117				343		18:30	249		403				652	
06:45	319	833	177	423			496	1256	18:45	208	871	328	1608			536	2479
07:00	340		112				452	33403	19:00	221		297				518	1 111 11
07:15	316		129				445	delle inte Generalie	19:15	178		251				429	# 1 H
07:30	360		225				585		19:30	140		253				393	199
07:45	470	1486	255	721			725	2207	19:45	174	713	270	1071			444	1784
08:00	426		131				557		20:00	199		211				410	200 A A
08:15	391		151				542		20:15	234		176				410	
08:30	320		160				480		20:30	160		210				370	
08:45	308	1445	135	577			443	2022	20:45	131	724	146	743			277	1467
09:00	253		133				386		21:00 21:15	139		161				300	
09:15 09:30	234		144				378	3	21:15 21:30	108		115				223	
09:30	194 229	910	117 139	533			311 368	1443	21:30 21:45	93 90	420	137	C C A			230 231	004
10:00	166	310	157	222			323	1443	22:00	69	430	141 129	554			198	984
10:00	208		126				334	100	22:15	65		89				154	
10:15	185		143				328		22:30	45		99				144	
10:45	185	744	160	586			345	1330	22:45	33	212	52	369			85	581
11:00	189	, -1-4	189	500		·	378	الاددد	23:00	29	<u> Lik</u>	58	. 303			87	- דסר
11:15	191		174				365		23:15	38		40				78	
11:30	216		217				433	100	23:30	26		46				72	* . *
11:45	229	825	194	774			423	1599	23:45	23	116	21	165			44	281
TOTALS		6840	· :	4092				10932	TOTALS		8550		11890	A HENCE			20440
SPLIT %		62.6%		37.4%				34.8%	SPLIT %		41.8%		58,2%				65.2%

	DAILY TOTALS		NB	SB	4.4	EB	WB						Total	
	DAILT TOTALS	15,390		15,982	0		0						31,37	2
AM Peak Hour	11:45	nea ac	Term issentifica	07:30	PM Peá	k Hour	12:30	92045 D. V.	17:00	4	and the	71	: 17	7:00
AM Pk Volume	1647 884			2409	1.73 2.4 1. 1.0	olume	1055		1869				21	115
Pk Hr Factor	0.876 0.948		els dise	-0.831	PkHrF	actor	0.909	<u> </u>	0.973			<u>North Aire</u>	0.	981
7 - 9 Volume	2931 1298	4.3	ng did ni graj	4229	4 - 6 Vo	lume	1803		3246				50	049
7 - 9 Peak Hour		Garage		07:30	4 - 6 Pea	k Hour	17:00		17:00				17	7:00
7 - 9 Pk Volume	1647 762		yan kunik b	2409	4 - 6 Pk \	/olume	948		1869			Service Control	28	817
Pk Hr Factor	0.876 0.747	i dayî		0.831	Pk Hr F	actor	0.926	£14.50	0.973			. Principle	Ó.	981

VOLUME

El Toro Rd S/o SR-241

Day: Tuesday Date: 5/24/2011

	DAILY TOTALS NB SB 7,563 7,029		EB	EB WB 0 0								Total 14,592					
										U				•			
AM Period	NB		SB		28	WB	TOTAL	PM Period	NB		SB		EB	\	WB		OTAL
00:00	11		4				15	12:00	84		73					157	
00:15	8		6				14	12:15	83		83					166	
00:30	17	••	8	0.4			25	12:30	120		89					209	
00:45	6	42	3	21			9 63		110	397	66	311				176	708
01:00 01:15	7		3				10	13:00 13:15	98		91					189	
01:15	9		2				11	13:30	103 93		85 74					188	
01:45	2	19	4	12			6 31		107	401	67	317				167 174	718
02:00	3	2.2	2	12		·	5	14:00	105	401	84	317				189	/10
02:15	1		6				7	14:15	139		105					244	
02:30	3		Ö				3	14:30	100		111					211	
02:45	3	10	4	12			7 22	4	130	474	141	441				271	915
03:00	0		1			- · · · - ·	1	15:00	156		121	*11	•••	•		277	313
03:15	ō		1				1 1	15:15	243		111					354	: :
03:30	1		2				3	15:30	184		107					291	
03:45	2	3	5	9		•	7 12		143	726	110	449				253	1175
04:00	6		9				15	16:00	159		134					293	
04:15	2		13				15	16:15	163		102					265	
04:30	2		14				16	16:30	170		111					281	
04:45	8	18	29	65			37 83	16:45	177	669	137	484				314	1153
05:00	8		21				29	-7,100	170		126					296	7.7.7.
05:15	12		20				32	17:15	199		148					347	
05:30	15		40				55-	17:30	222		136					358	
05:45	20	55	43	124			63 179		175	766	130	540				305	1306
06:00	28		50				78	18:00	177		135					312	•
06:15 06:30	37		80				117	18:15	167		151					318	
06:30	54 72	191	157 182	469			211 254 660	18:30 18:45	175 152	C74	107	405				282	1156
07:00	83	131	123	409			206	19:00	130	671	102 103	495				254	1166
07:15	89		165				254	19:15	128		78					206	
07:30	109		262				371	19:30	125		58					183	
07:45	125	406	257	807			382 121		104	487	66	305				170	792
08:00	100		185				285	20:00	127		76	505				203	- 1.72
08:15	94		155				249	20:15	128		70					198	***
08:30	90		98				188	20:30	95		88					183	
08:45	86	370	11 5	553			201 92	20:45	96	446	69	303				165	749
09:00	72		105				177	21:00	93		61					154	10.73
09:15	66		97				163	21:15	89		42					-131	
09:30	48		92				140	21:30	77		39					116	
09:45	60	246	87	381			147 62		64	323	39	181				_103	504
10:00	64		75				139	22:00	49		37					86	
10:15	61		62				123	22:15	51		21					7.2	
10:30	75	200	71	201			146	22:30	48		16	n -				64	
10:45	60	260	73	281			133 54:		23	171	17	91				40	262
11:00	69		76				145	23:00	25		17					42	
11:15	76 76		73				149	23:15	34		13					47	
11:30 11:45	76 87	308	85 93	327			161 180 635	23:30 23:45	19	104	10	Г1				29	455
TOTALS	8/	1928		3061			180 639 498	18.5	26	104 5635	11	51 3968	A PA	i fa tj	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	37	155 9603
SPLIT%		38.6%		61.4%	·····		1	<u> </u>			<u> </u>	- 1	- 11 T		9 14 9 8 7 1843	+	
ər Ei 1 70		30.076		D1.476	<u>- 1, , , , , , , , , , , , , , , , , , ,</u>	<u> </u>	34.2	70 STELL 70	er "iš.	58.7%		41.3%			3 2 MAG	: L: `	65.8%

DAILY TOTALS	NB	SB	EB WB Total
DAILT FOTALS	7,563	7,029	0 0 14,592
AM Peak Hour 07:30 07:15		07:15	PM Peak Hour 17:15 17:30 17:15
AM Pk Volume 428 869		1292	PM/Pk Volume 773 552 1322
Pk Hr Factor 0.856 0.829 7-9 Volume 776 1360	en kuuden kuud Tulevalla elive	0.846 2136	PKHr Factor 0.870 0.914 0.923 4 - 6 Volume 1435 1024 2459
7 - 9 Peak Hour 07:30 .07:15		07:15	네. 선명은 15이 시민(1975) 및 경에 이번 시간 모든 이 경우 [2] 사이트를 보고 보고 보고 있다. 그리고 보다 그 보는 그는 그는 그래 하다.
7-9 Pk Volume 428 869 Pk Hr Factor 0.856 0.829		1292 0.846	● 「Mile TWANGVILED TANKTERNATES OF THE TRIBET SET ON A DESTRUCTION AND A SET OF A

Appendix B

Approved Scope of Work

Bob Kahn

From:

Persaud, Harry [Harry.Persaud@ocpw.ocgov.com]

Sent:

Monday, June 27, 2011 8:17 AM

To:

Bob Kahn

Cc:

Alonso Rice, Isaac; Bazmi, Khalid

Subject:

RE: Saddle Crest Revised TIS Scope of Work

Good Morning Bob SOW for subject TS is approved.

Have a pleasant day

Harry Persaud AICP, PMP
Manager
Planned Communities/Planning/OCPublic Works
County of Orange, CA
714-834-2694

From: Bob Kahn [mailto:rk@rkengineer.com]

Sent: Monday, June 27, 2011 7:14 AM

To: Bob Kahn; Persaud, Harry

Cc: meadie@rutterdevelopment.com; perimuretta@cox.net; Bryan Estrada

Subject: RE: Saddle Crest Revised TIS Scope of Work

Harry,

Can you send me an email approving the Scope of Work for the Traffic Impact Study?

Thanks,

Robert Kahn PE Principal

transportation planning / traffic engineering & design acoustical engineering / community traffic calming 4000 Westerly Place, Suite 280 Newport Beach, CA 92660 tel. 949.474.0809 cell 949.293-9639 fax 949.474.0902 www.rkengineer.com

From: Bob Kahn

Sent: Monday, June 13, 2011 1:20 PM

To: 'Persaud, Harry'

Cc: 'meadie@rutterdevelopment.com'; 'perimuretta@cox.net'; Bryan Estrada

Subject: RE: Saddle Crest Revised TIS Scope of Work

Harry,

Did you have a chance to review the revised scope of approval? We would like to see if we could get it approved as soon as possible.

Thanks,

Robert Kahn PE Principal

transportation planning / traffic engineering & design acoustical engineering / community traffic calming 4000 Westerly Place, Suite 280 Newport Beach, CA 92660 tel. 949.474.0809 cell 949.293-9639 fax 949.474.0902 www.rkengineer.com

From: Bob Kahn

Sent: Tuesday, June 07, 2011 3:06 PM

To: Persaud, Harry

Cc: 'meadie@rutterdevelopment.com'; perimuretta@cox.net; Bryan Estrada

Subject: Saddle Crest Revised TIS Scope of Work

Harry,

Attached is our revised scope of work dated June 7, 2011. I have incorporated your comments including adding the additional intersection of Santiago Canyon Road at Modjeska Grade Road, and adding a detailed discussion of why the previous Santiago Canyon Road segment analysis is not appropriate in comparison to a V/C ratio evaluation. It will also discuss the project's compliance with the County's Santiago Canyon Road LOS standards.

RK will include an Interim Year analysis (Year 2016) based upon existing traffic volumes, a growth rate and cumulative projects expected by Year 2016 from the County, City of Lake Forest, City of Mission Viejo and City or Orange plus the project.

I would respectfully request that you approve the Scope of Work so that we can proceed with are analysis.

Thanks,

Robert Kahn PE Principal

TTT emphasering press, Inc.

transportation planning / traffic engineering & design acoustical engineering / community traffic calming 4000 Westerly Place, Suite 280 Newport Beach, CA 92660 tel. 949.474.0809 cell 949.293-9639 fax 949.474.0902 www.rkengineer.com

DID YOU KNOW: Orange County Public Works provides road maintenance for the cities of Dana Point, Laguna Hills, Laguna Woods, Lake Forest, Mission Viejo and the Transportation Corridor Agencies (The Toll Road Agency)?

Saddle Crest Traffic Impact Study (TIS) Scope of Work

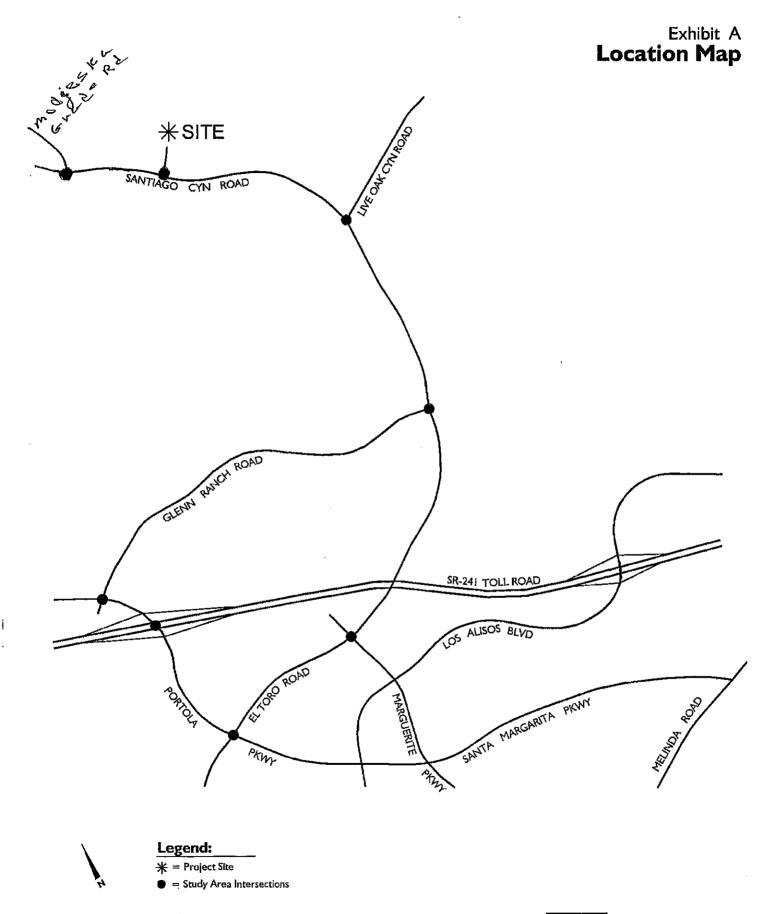
Introduction

The purpose of this document is to identify the precise scope of work for the Saddle Crest Project Traffic Impact Study (TIS). The scope of work will be based upon the requirements of the GMP (Growth Management Program) Transportation Implementation Manual (TIM). It will include an evaluation of existing, near Interim Year (Project Buildout Year 2016), and long term (Year 2035) traffic impacts associated with the project. Appropriate mitigation measures and fair-share analysis will be included as part of the traffic impact study.

The proposed project would consist of 65 single-family, detached, residential dwelling units served by a single full service access to Santiago Canyon Road. The location of the project is shown in Exhibit A and the proposed site plan/vesting Tentative Tract Map is included in Exhibit B. The TIS will address project specific and cumulative traffic impacts in the study area. Study area intersections are shown in Exhibit A and were determined based upon the requirements of the Transportation Implementation Manual. Other non-signalized intersections and minor signalized intersections within other jurisdictions were not included pursuant to the TIM requirements.

The following is an outline of the proposed scope of work:

- Introduction The introduction of the TIS will describe the historical background conditions of the project, a project description of the proposed development, location, intensity of development, and a brief discussion of what items will be included in the traffic impact study.
- II. Traffic Impact Study Methodology This section of the traffic impact study will discuss the methodologies to be employed for the traffic impact study. This will include ICU (Intersection Capacity Utilization) Methodology for signalized intersections, HCM (Highway Capacity Manual) for unsignalized intersections and volume/capacity analysis for roadway segments for both average daily traffic (ADT) and peak hour directional flow. The County's level of service policy (LOS = "C") will be utilized for roadway segment analysis for Santiago Canyon Road and LOS = "D" for all intersections. This section of the report will also describe significance threshold pursuant to County policy requirements and will discuss any intersections on the County's Deficient Intersection List.


An explanation of why the previous TIM HCM segment analysis for Santiago Canyon Road is not appropriate. This will also be supported with travel time runs for existing conditions for Santiago Canyon Road from Live Oak Canyon Road to Modjeska Grade Road that will be provided.

- III. The Site Plan/Vesting Tentative Tract Map will be reviewed from a Traffic Circulation Standpoint This section will review the project access and internal circulation for the project.
- IV. A field review of existing conditions of study area including intersections/roadway segments, lane configurations, and traffic controls will be discussed in this section of the report.
- V. Existing AM/PM peak hour traffic counts at the study area intersections will be obtained. Also 24-hour traffic counts on Santiago Canyon Road and El Toro Road will be obtained at the locations included in Exhibit A plus the intersection of Santiago Canyon Road at Modjeska Grade Road. Existing traffic counts (2011) at study area intersections and roadway segments are included in Exhibit F. These were obtained when school was in session. Additionally, the potential impacts of any special events (i.e. weddings and other special uses) along Santiago Canyon Road will be reviewed with respect to impacts upon intersection and roadway segment volumes.
- VI. Existing levels of service at study area intersections and roadway segments will be determined. A volume/capacity ratio analysis for Santiago Canyon Roadway segments will be calculated to determine levels of service.
- VII. The project's trip generation, trip distribution, and traffic assignment to the adjoining roadway system will be determined. Preliminary project trip generation rates are included in Table 3-1 and project trip generation is included in Table 3-2. The project trip distribution is included in Exhibit G.
- VIII. Existing Plus Project Traffic Impacts and Level of Service at Study Area Intersections and Roadway Segments along Santiago Canyon Road will be determined. Any required traffic improvements will be identified.
- IX. The Interim Year (Year 2016) Traffic Impacts, and Level of Service Without and With the Project at the Study Area Intersections and Santiago Canyon Roadway segments will be determined and the potential improvements will be identified for both the without and with project scenarios. An ambient growth rate of 2% per year will be used along with cumulative projects identified by the County and adjacent cities.
- X. The traffic study will evaluate long term traffic impacts based upon the OCP 2035 traffic model data. Project traffic will be added to the modeling data as a conservative assessment of future conditions. A consistent finding with respect to the long-term traffic modeling will be confirmed with OCTA to ensure that the Foothill Trabuco Specific Plan Land uses have been accommodated based upon the socioeconomic data.

RK:nq/RK7780.doc JN:2218-2011-01

- XI. The long term impacts without and with the project will be determined based upon the OCP 2035 traffic model data. Project traffic will be added to the modeling data as a conservative assessment of future conditions. Any long term improvements without and with the project will be determined as part of this analysis.
- XII. Traffic Mitigation Measures (i.e. traffic signals, additional traffic lanes, etc.) that may be required to accommodate the project will be identified. A preliminary cost for improvements will be identified.
- XIII. A fair-share traffic contribution of the project for both near term and long term conditions with the project will be presented based upon the County methodology.
- XIV. Various road fee programs that are applicable to the project will be discussed in this section of the report. Any of the improvements required that are part of any existing applicable road fee program will be identified.
- XV. Project Recommendations will be summarized in both graphic and tabular format.
- XVI. The results of the TIS will be summarized in a draft traffic impact report.
- XVII. The draft report will be submitted to the County for review.
- XVIII. The TIS will be revised pursuant to the County comments.

Exhibits

Exhibit B **Site Plan**

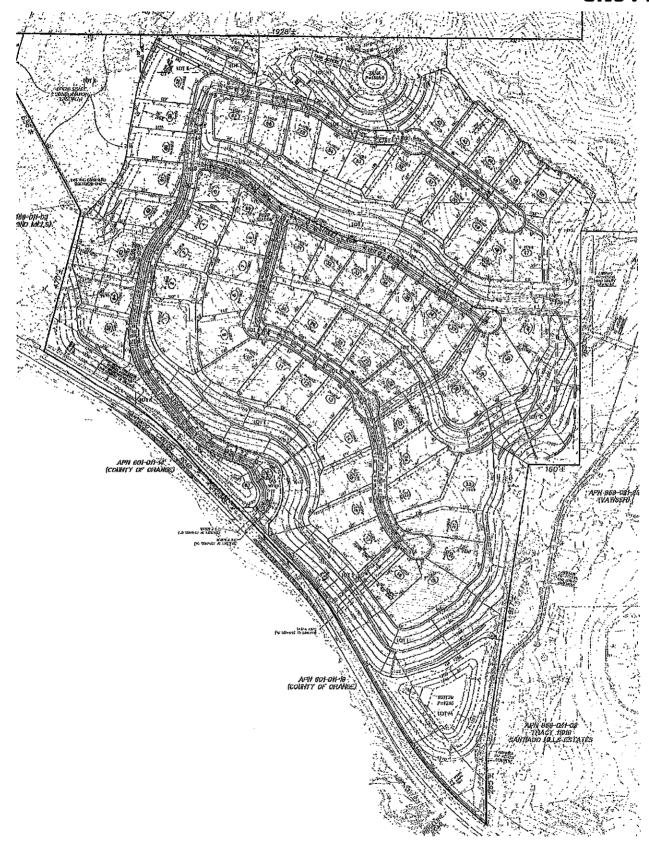
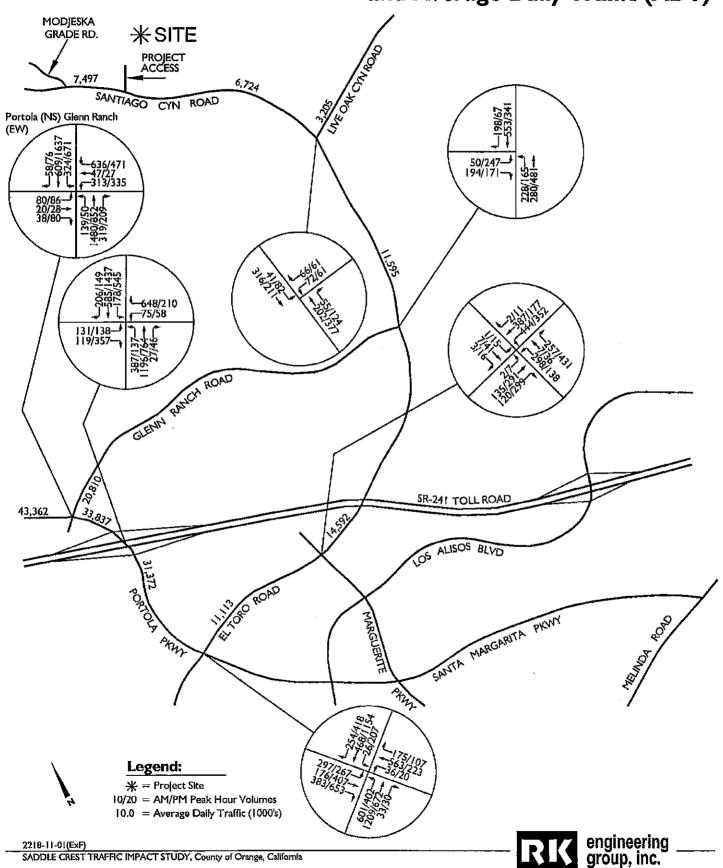
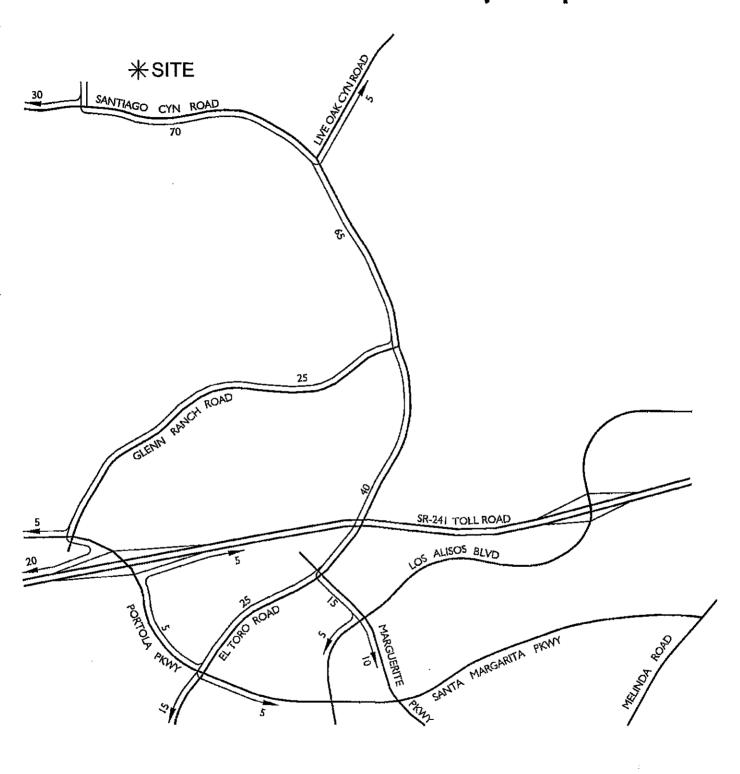




Exhibit F
Existing Peak Hour Intersection Volumes
and Average Daily Traffic (ADT)

Exhibit G **Project Trip Distribution**

* = Project Site

10 = Percent to/from Project

Tables

TABLE 3-1

Trip Generation Rates¹

					Peak	Hour			
				AM					
Land Use	Quantity	Units ²	In	Out	Total	In	Out	Total	Daily
									-
Single-Family Detached Housing	65	DU	0.24	0.65	0.89	0.76	0.44	1.20	12.00

¹ Source: The daly trip generation is based on the single family detached rate from the County of Orange Trip Generation Rate Summary (Daily Vehicle Trip Generation Rates, August 1982). The peak hour trip generation rates were taken from the Foothill/Trabuco Specific Plan Traffic Analysis (Austin-Foust Associates, In. July 1991).

DU = Dwelling Units

TABLE 3-2
Trip Generation

	1			AM		PM			İ
Land Use	Quantity	Units ¹	ln	Out	Total	ln	Out	Total	Daily
Single-Family Detached Housing	65	DU	16	42	58	49	29	78	780

TSF = Thousand Square Feet RM = Rooms

Bob Kahn

From:

Persaud, Harry [Harry.Persaud@ocpw.ocgov.com]

Sent:

Monday, June 27, 2011 8:17 AM

To:

Bob Kahn

Cc:

Alonso Rice, Isaac: Bazmi, Khalid

Subject:

RE: Saddle Crest Revised TIS Scope of Work

Good Morning Bob

SOW for subject TS is approved.

Have a pleasant day

Harry Persaud AICP, PMP Manager Planned Communities/Planning/OCPublic Works County of Orange, CA 714-834-2694

From: Bob Kahn [mailto:rk@rkengineer.com]
Sent: Monday, June 27, 2011 7:14 AM

To: Bob Kahn; Persaud, Harry

Cc: meadie@rutterdevelopment.com; perimuretta@cox.net; Bryan Estrada

Subject: RE: Saddle Crest Revised TIS Scope of Work

Harry,

Can you send me an email approving the Scope of Work for the Traffic Impact Study?

Thanks,

Robert Kahn PE Principal

transportation planning / traffic engineering & design acoustical engineering / community traffic calming 4000 Westerly Place, Suite 280 Newport Beach, CA 92660 tel. 949.474.0809 cell 949.293-9639 fax 949.474.0902 www.rkengineer.com

From: Bob Kahn

Sent: Monday, June 13, 2011 1:20 PM

To: 'Persaud, Harry'

Cc: 'meadie@rutterdevelopment.com'; 'perimuretta@cox.net'; Bryan Estrada

Subject: RE: Saddle Crest Revised TIS Scope of Work

Harry,

Did you have a chance to review the revised scope of approval? We would like to see if we could get it approved as soon as possible.

Thanks,

Robert Kahn PE Principal

and output inc.

transportation planning / matric engineering & design acoustical engineering / community traffic calming 4000 Westerly Place, Suite 280 Newport Beach, CA 92660 tel. 949.474.0809 cell 949.293-9639 fax 949.474.0902 www.rkengineer.com

From: Bob Kahn

Sent: Tuesday, June 07, 2011 3:06 PM

To: Persaud, Harry

Cc: 'meadie@rutterdevelopment.com'; perimuretta@cox.net; Bryan Estrada

Subject: Saddle Crest Revised TIS Scope of Work

Harry,

Attached is our revised scope of work dated June 7, 2011. I have incorporated your comments including adding the additional intersection of Santiago Canyon Road at Modjeska Grade Road, and adding a detailed discussion of why the previous Santiago Canyon Road segment analysis is not appropriate in comparison to a V/C ratio evaluation. It will also discuss the project's compliance with the County's Santiago Canyon Road LOS standards.

RK will include an Interim Year analysis (Year 2016) based upon existing traffic volumes, a growth rate and cumulative projects expected by Year 2016 from the County, City of Lake Forest, City of Mission Viejo and City or Orange plus the project.

I would respectfully request that you approve the Scope of Work so that we can proceed with are analysis.

Thanks,

Robert Kahn PE Principal

transportation planning / trailie engineering & design acoustical engineering / community traffic calming 4000 Westerly Place, Suite 280 Newport Beach, CA 92660 tel. 949.474.0809 cell 949.293-9639 fax 949.474.0902 www.rkengineer.com

DID YOU KNOW: Orange County Public Works provides road maintenance for the cities of Dana Point, Laguna Hills, Laguna Woods, Lake Forest, Mission Viejo and the Transportation Corridor Agencies (The Toll Food Agency)?

Appendix C

Existing Conditions Intersection Analysis Worksheets

______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ******************************* Intersection #1 PORTOLA PKWY (NS) @ GLENN RANCH RD (EW) ******************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.550
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 26 Level Of Service: A ************************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 139 1480 319 324 609 58 80 20 38 313 47 Initial Bse: 139 1480 319 324 609 58 80 20 38 313 47 User Adj: 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 1.00 1.00 1.00 0.00 PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 PHF Volume: 139 1480 271 324 609 49 80 20 38 313 47 0 FinalVolume: 139 1480 271 324 609 49 80 20 38 313 47 115 OvlAdjVol: _____| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.04 0.29 0.16 0.10 0.12 0.03 0.05 0.01 0.02 0.09 0.01 0.00 OvlAdjV/S: 0.07 *** Crit Moves: ******************

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ******************* Intersection #1 PORTOLA PKWY (NS) @ GLENN RANCH RD (EW) ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.560
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 27 Level Of Service: A ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----|------| Volume Module: Base Vol: 50 852 209 671 1637 76 86 28 80 335 27 471 FinalVolume: 50 852 178 671 1637 65 86 28 80 335 27 10 OvlAdiVol: Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.01 0.17 0.10 0.20 0.32 0.04 0.05 0.02 0.05 0.10 0.01 0.00 0.01 *************************

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #2 PORTOLA PKWY (NS) @ SR-S41 RAMPS (EW) ********************************** Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 5
Optimal Cycle: 20 Average Delay (sec/veh): XXXXXX Level Of Service: ********************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Rights:
 Ignore
 Ignore
 Ignore
 Ignore
 Ignore
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 -----|----|----||-----||------||------| Volume Module: Base Vol: 387 1196 27 178 585 206 0 119 75 131 0 Initial Bse: 387 1196 27 178 585 206 131 0 119 75 0 PHF Volume: 387 1196 0 178 585 0 131 0 0 75 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 387 1196 0 178 585 0 131 0 0 75 0 Saturation Flow Module: Lanes: 2.00 3.00 1.00 2.00 2.00 1.00 1.00 0.00 1.00 2.00 0.00 1.00 Final Sat.: 3400 5100 1445 3400 3400 1445 1700 0 1445 3400 0 1445 Capacity Analysis Module: Vol/Sat: 0.11 0.23 0.00 0.05 0.17 0.00 0.08 0.00 0.00 0.02 0.00 0.00 Crit Moves: **** **** *****************

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ******************************** Intersection #2 PORTOLA PKWY (NS) @ SR-S41 RAMPS (EW) ******************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.594 Loss Time (sec): 5
Optimal Cycle: 29 Average Delay (sec/veh): xxxxxx Level Of Service: A ********************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R------| Volume Module: Base Vol: 137 764 46 545 1437 149 138 0 357 58 0 210 Initial Bse: 137 764 46 545 1437 149 138 0 357 58 0 210 Saturation Flow Module: Adjustment: 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 Lanes: 2.00 3.00 1.00 2.00 2.00 1.00 1.00 0.00 1.00 2.00 0.00 1.00 Final Sat.: 3400 5100 1445 3400 3400 1445 1700 0 1445 3400 0 1445 Capacity Analysis Module: Vol/Sat: 0.04 0.15 0.00 0.16 0.42 0.00 0.08 0.00 0.00 0.02 0.00 Crit Moves: **** **** **** *************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) ******************************* Intersection #3 SANTIAGO CANYON RD (NS) @ MODJESKA GRADE RD (EW) ********************************** Average Delay (sec/veh): 0.6 Worst Case Level Of Service: B[14.3] *********************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R ------|-----|-----||------||------| Volume Module: Base Vol: 0 322 10 0 292 0 0 0 O 28 0 Initial Bse: 0 322 10 0 292 0 0 0 28 0 0 PHF Volume: 0 357 11 0 324 0 0 0 0 31 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 357 11 0 324 0 0 0 0 0 0 0 0 Critical Gap Module: Capacity Module: Level Of Service Module: ApproachDel: xxxxxx ApproachLOS: * ----Note: Queue reported is the number of cars per lane. ************************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #3 SANTIAGO CANYON RD (NS) @ MODJESKA GRADE RD (EW) ********** Average Delay (sec/veh): 0.4 Worst Case Level Of Service: B: 14.41 ****************** Approach: North Bound South Bound East Bound West Bound L - T - R L - T - R L - T - R Movement: -----| Volume Module: 0 376 Base Vol: 38 2 326 0 0 0 16 Initial Bse: 0 376 38 2 326 0 0 0 16 0 PHF Volume: 0 398 40 2 345 0 0 0 17 0 2 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 398 40 2 345 0 0 0 17 0 Critical Gap Module: FollowUpTim:xxxxx xxxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxxx xxxxx 3.5 4.0 3.3 _____| Capacity Module: Level Of Service Module: LOS by Move: * * * A * * * * * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT SharedQueue:xxxxx xxxxx xxxxx 0.0 xxxx xxxxx xxxxx xxxxx xxxxx 0.1 xxxxx Shrd ConDel:xxxxx xxxx xxxxx 8.2 xxxx xxxxx xxxxx xxxxx xxxxx 14.4 xxxxx Shared LOS: * * * A * * * * * B xxxxx xxxxx ApproachDel: xxxxxx 14.4 ApproachLOS: В *********************************** Note: Queue reported is the number of cars per lane. *****

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) ************************************ Average Delay (sec/veh): 2.9 Worst Case Level Of Service: B[13.2] ******************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include

 Lanes:
 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1
 1 0 0 0 1
 Volume Module: 0 202 55 41 316 Base Vol: 0 0 0 0 72 Initial Bse: 0 202 55 41 316 0 0 0 72 0 PHF Volume: 0 222 61 45 348 0 0 0 79 0 73 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 222 61 45 348 0 0 0 0 79 0 73 -----|-----||-------||-------| Critical Gap Module: Critical Gp:xxxxx xxxxx xxxxx 4.1 xxxx xxxxx xxxxx xxxxx xxxxx 6.4 xxxx FollowUpTim:xxxxx xxxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxxx xxxx xxxxx 3.5 xxxx 3.3 Capacity Module: Level Of Service Module: ApproachDel: xxxxxx ApproachLOS: * В Note: Queue reported is the number of cars per lane. ***********************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Base Volume Alternative) Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) ************************** Average Delay (sec/veh): 2.8 Worst Case Level Of Service: C[15.2] ****************** Approach: North Bound South Bound East Bound West Bound Movement: L-T-R L-T-R L-T-R -----|
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include

 Lanes:
 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1
 Volume Module: 0 377 124 82 211 Base Vol: 0 0 0 61 Initial Bse: 0 377 82 211 0 0 0 0 124 61 0 PHF Volume: 0 385 127 84 216 0 0 0 62 0 62 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 385 127 84 216 0 0 0 0 62 0 0 Critical Gap Module: Critical Gp:xxxxx xxxxx xxxxx 4.1 xxxx xxxxx xxxxx xxxxx xxxxx 6.4 xxxx 6.2 FollowUpTim:xxxxx xxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxxx xxxxx 3.5 xxxx 3.3 ------| Capacity Module: Cnflict Vol: xxxx xxxx xxxxx 512 xxxx xxxxx xxxx xxxx xxxx 831 xxxx 448 Level Of Service Module: 0.3 Control Del:xxxxx xxxxx xxxxx 8.7 xxxx xxxxx xxxxx xxxxx xxxxx 18.9 xxxx 11.5 LOS by Move: * * * A * * * * * C * B Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT xxxxx ApproachDel: xxxxxx
ApproachLOS: * ApproachLOS: C ************************************ Note: Queue reported is the number of cars per lane. ***********

_______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) ************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.502
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 24 Level Of Service: A ************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| -----| Volume Module: Base Vol: 228 280 0 0 553 198 50 0 194 0 0 Initial Bse: 228 280 0 0 553 198 50 0 194 0 0 PHF Volume: 228 280 0 0 553 198 50 0 165 0 0 FinalVolume: 228 280 0 0 553 198 50 0 165 0 0 0 Saturation Flow Module: Lanes: 1.00 1.00 0.00 0.00 1.47 0.53 1.00 0.00 1.00 0.00 0.00 Final Sat.: 1700 1700 0 0 2504 896 1700 0 1700 0 0 -----| Capacity Analysis Module: Vol/Sat: 0.13 0.16 0.00 0.00 0.22 0.22 0.03 0.00 0.10 0.00 0.00 0.00 **** Crit Moves: **** ++++

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ******************************* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.478
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 29 Level Of Service: A Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Volume Module: Base Vol: 165 481 0 0 341 67 247 0 171 0 Initial Bse: 165 481 0 0 341 67 247 0 171 0 0 User Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.85 1.00 1.00 1.00 PHF Volume: $165 \ 481 \ 0 \ 0 \ 341 \ 67 \ 247 \ 0 \ 145 \ 0 \ 0 \ 0$ Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 165 481 0 0 341 67 247 0 145 0 0 FinalVolume: 165 481 0 0 341 67 247 0 145 0 0 -----| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.10 0.28 0.00 0.00 0.12 0.12 0.15 0.00 0.09 0.00 0.00 0.00 Crit Moves: **** **********************************

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) ****************************** Intersection #7 MARGUERITE PKWY (NS) @ EL TORO RD (EW) ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.330
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 18 Level Of Service: A ***************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| Volume Module: Base Vol: 298 7 257 1 7 3 2 135 120 444 387 Initial Bse: 298 7 257 1 7 3 2 135 120 444 387 User Adj: 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 PHF Volume: 298 7 218 1 7 3 2 135 102 444 387 2 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 298 7 218 1 7 3 2 135 102 444 387 FinalVolume: 298 7 218 1 7 3 2 135 102 444 387 2 0 OvlAdjVol: Saturation Flow Module: -----| Capacity Analysis Module: Vol/Sat: 0.09 0.00 0.13 0.00 0.00 0.00 0.04 0.06 0.13 0.11 0.11 OvlAdjV/S: 0.00 Crit Moves: **** **** ************************

______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #8 PORTOLA/SANTA MARGARITA PKWY (NS) & EL TORO RD (EW) ************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.639
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 32 Level Of Service: B ********************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Ignore
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 -----| Volume Module: Base Vol: 601 1209 33 26 468 254 297 176 383 36 563 175 Initial Bse: 601 1209 33 26 468 254 297 176 383 36 563 175 PHF Volume: 601 1209 28 26 468 216 297 176 0 36 563 149 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 601 1209 28 26 468 216 297 176 0 36 563 149 FinalVolume: 601 1209 28 26 468 216 297 176 0 36 563 149 Saturation Flow Module: Final Sat.: 3400 6800 1700 3400 5100 1700 1700 5100 1700 1700 5100 1700 Capacity Analysis Module: Vol/Sat: 0.18 0.18 0.02 0.01 0.09 0.13 0.17 0.03 0.00 0.02 0.11 0.09 Crit Moves: **** **** *** ****************** ______

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Base Volume Alternative) Intersection #8 PORTOLA/SANTA MARGARITA PKWY (NS) & EL TORO RD (EW) ******************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.605
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Ontimal Cyclo: 29 Loss Time (sec): 5 Optimal Cycle: 29 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Ignore
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 _____| Volume Module: Base Vol: 402 672 30 207 1154 418 267 407 653 20 223 107 Initial Bse: 402 672 30 207 1154 418 267 407 653 20 223 PHF Volume: 402 672 26 207 1154 355 267 407 0 20 223 FinalVolume: 402 672 26 207 1154 355 267 407 0 20 223 91 Saturation Flow Module: _____| Capacity Analysis Module: Vol/Sat: 0.12 0.10 0.02 0.06 0.23 0.21 0.16 0.08 0.00 0.01 0.04 0.05 Crit Moves: **** **** **** ************************

Appendix D

County of Orange Saddle Crest Traffic Impact Study Traffic Forecast Data 2015 and Buildout

County of Orange Saddle Crest Traffic Impact Study Traffic Forecast Data

2015 and Buildout

Prepared by:

Austin-Foust Associates, Inc. 2223 E. Wellington Ave., Ste. 300 Santa Ana, CA 92701-3161 (714) 667-0496

CONTENTS

DEMOGRAPHIC DATA

Table 1: OCP-2006 Demographic Projections

Figure 1: RSAs and CAAs

TRAFFIC FORECAST DATA

Figure 2: Santiago Canyon Road Traffic Volumes

Figure 3: ADT Volumes (000s) (North of Live Oak Canyon)

Figure 4: ADT Volumes (000s) (South of Live Oak Canyon)

Peak Hour Intersection Volumes

DEMOGRAPHIC DATA

The traffic forecast volumes are based on various sources including a previous analysis carried out for Santiago Canyon Road (County of Orange Transportation Implementation Manual, Santiago Canyon Road Analysis, Austin-Foust Associates, Inc., April 2009), the current Orange County Transportation Analysis Model (OCTAM), which reflects OCP-2006 demographic projections, and the Lake Forest Traffic Analysis Model (LFTAM), which includes the Vacant Land Opportunities Study Area development as well as the recently approved Lake Forest Sports Park at Glass Creek. The East Orange approved development and buildout of the Foothill/Trabuco Specific Plan (including the project site) are also assumed in the forecasts. Table 1 summarizes demographic data projections for areas contributing to traffic on Santiago Canyon Road. The overall population growth is 45 percent and the growth in employment is 35 percent. In combination, this would indicate a growth of traffic from these CAAs of around 44 percent which is reflected in the traffic forecasts.

2 1023002tfd.doc

Table 1
OCP-2006 DEMOGRAPHIC PROJECTIONS

Select CAAs*		2005	2010	2015	2020	2025	2030	2035	
POPULA	TION								
	CAA 55	1,775	1,823	1,823	1,845	1,852	1,862	1,862	
	CAA 70	26,317	27,228	28,434	29,399	29,773	30,003	30,035	
RSA C-43	Total	28,092	29,051	30,257	31,244	31,625	31,865	31,897	
	5 Year Growth		3.4%	4.2%	3.3%	1.2%	.8%	.1%	
	Cum. Growth		3.4%	7.7%	11.2%	12.6%	13.4%	13.5%	
	CAA 29	4,831	14,700	15,326	15,502	15,567	15,661	15,686	
RSA B-41	5 Year Growth		204.3%	4.3%	1.1%	.4%	.6%	.2%	
	Cum, Growth		204.3%	217.2%	220.9%	222.2%	224.2%	224.7%	
COMBINED	TOTAL	32,923	43,751	45,583	46,746	47,192	47,526	47,583	
	5 Year Growth		32.9%	4.2%	2.6%	1.0%	.7%	.1%	
	Cum. Growth		32.9%	38.5%	42.0%	43.3%	44.4%	44.5%	
EMPLOY	MENT								
	CAA 55	153	159	162	165	165	165	165	
	CAA 70	2,781	2,846	2,863	2,876	2,894	2,902	2,908	
RSA C-43	Total	2,934	3,005	3,025	3,041	3,059	3,067	3,073	
	5 Year Growth		2.4%	.7%	.5%	.6%	.3%	.2%	
	Cum. Growth		2.4%	3.1%	3.6%	4.3%	4.5%	4.7%	
	CAA 29	513	1,479	1,573	1,582	1,584	1,589	1,589	
RSA B-41	5 Year Growth		188.3%	6.4%	.6%	.1%	.3%	0%	
	Cum. Growth		188.3%	206.6%	208.4%	208.8%	209.7%	209.7%	
~~~~~	TOTAL	3,447	4,484	4,598	4,623	4,643	4,656	4,662	
	5 Year Growth		30.1%	2.5%	.5%	.4%	.3%	.1%	
	Cum. Growth		30.1%	33.4%	34.1%	34.7%	35.1%	35.2%	

^{*} See CAAs in Figure 1.

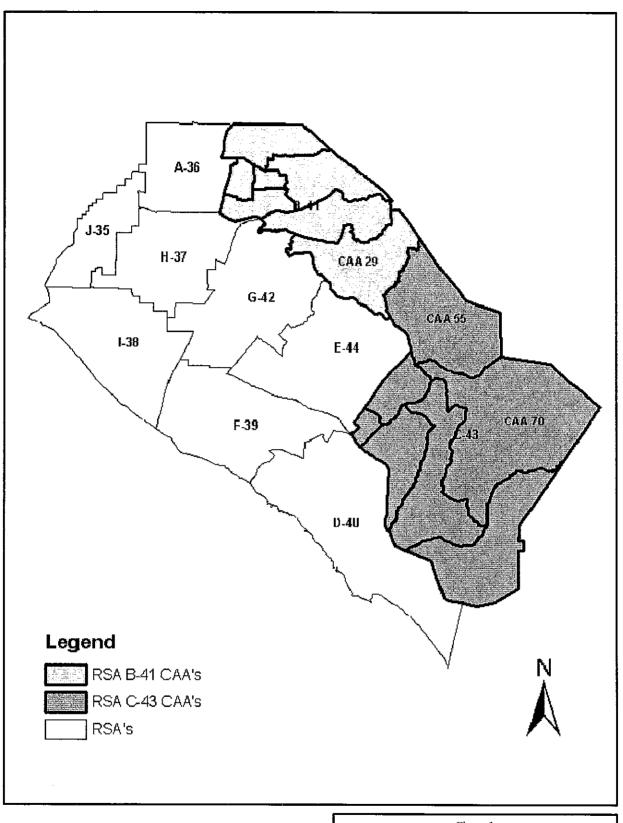



Figure 1

RSAs AND CAAs

# TRAFFIC FORECAST DATA

As previously mentioned, the traffic forecast volumes are based on various sources including a previous analysis carried out for Santiago Canyon Road (County of Orange Transportation Implementation Manual, Santiago Canyon Road Analysis, Austin-Foust Associates, Inc., April 2009), the current OCTAM 3.3, and the LFTAM, which includes the Vacant Land Opportunities Study Area development as well as the recently approved Lake Forest Sports Park at Glass Creek. The East Orange approved development and buildout of the Foothill/Trabuco Specific Plan (including the project site) are also assumed in the forecasts. The OCTAM uses regional and countywide demographic data projections (i.e., OCP-2006) to produce traffic forecasts on the local and regional highway system. The LFTAM was developed according to the Orange County sub-area traffic modeling guidelines that have been adopted by the Orange County Transportation Authority (OCTA), and the OCTA has certified the traffic model as being consistent with the OCTAM regional model.

Forecast data that was presented for the south end section of Santiago Canyon Road in the previously mentioned analysis is expanded here to include volume data for 2011 existing counts, short-term (year 2015) and buildout according to OCP-2006 projections in OCTAM3.3. This data and the OCTAM were mainly used to arrive at the volumes on Santiago Canyon Road north of Live Oak Canyon Road, and the LFTAM was used for the remaining areas.

Figures 2 through 4 illustrate the volumes as mentioned above for the Saddle Crest study area for year 2015 and buildout timeframes. The peak hour intersection volumes are included in the summary that follows. The intersections of Santiago Canyon Road at Modjeska Grade Road and at the project access should be derived by the traffic consultant. Both intersections are not included in the traffic models used here.

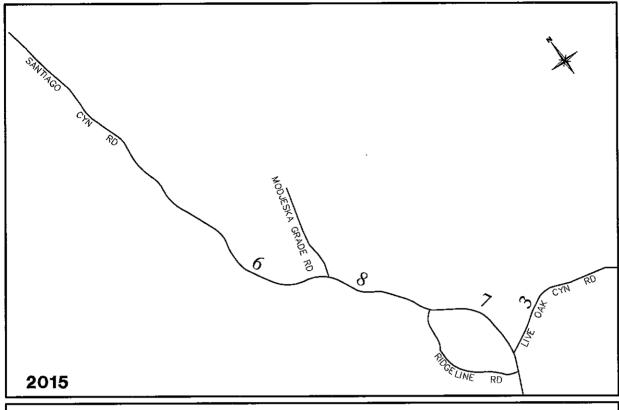
6 1023002tfd.doc



YEAR	ADT	AM F	PEAK	HOUR	PM PEAK HOUR			
ILAN	[8000]	EB	WB	Total	EB	WB	Total	
2007	6,000	340	290	630	280	440	720	
2011	6,700	360	270	630	290	440	730	
2015	6,800	370	280	650	300	450	750	
2025	11,000	690	440	1,130	440	700	1,140	
2035	11,110	700	440	1,140	440	710	1,150	

SANTIAGO CAN RO MODJESKA CAN RO

MODJESKA CAN RO


MODJESKA CAN RO

MODJESKA CAN RO

MODJESKA CAN RO

Figure 2

SANTIAGO CANYON ROAD TRAFFIC VOLUMES



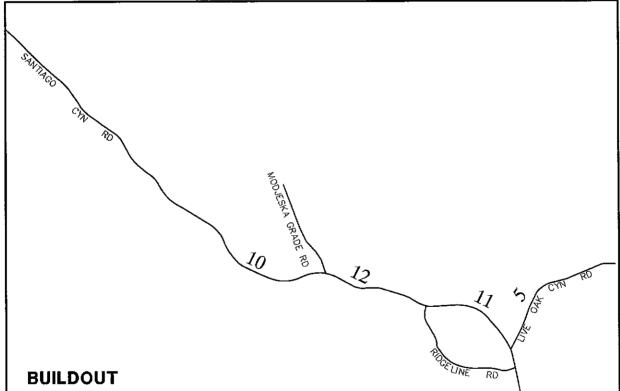
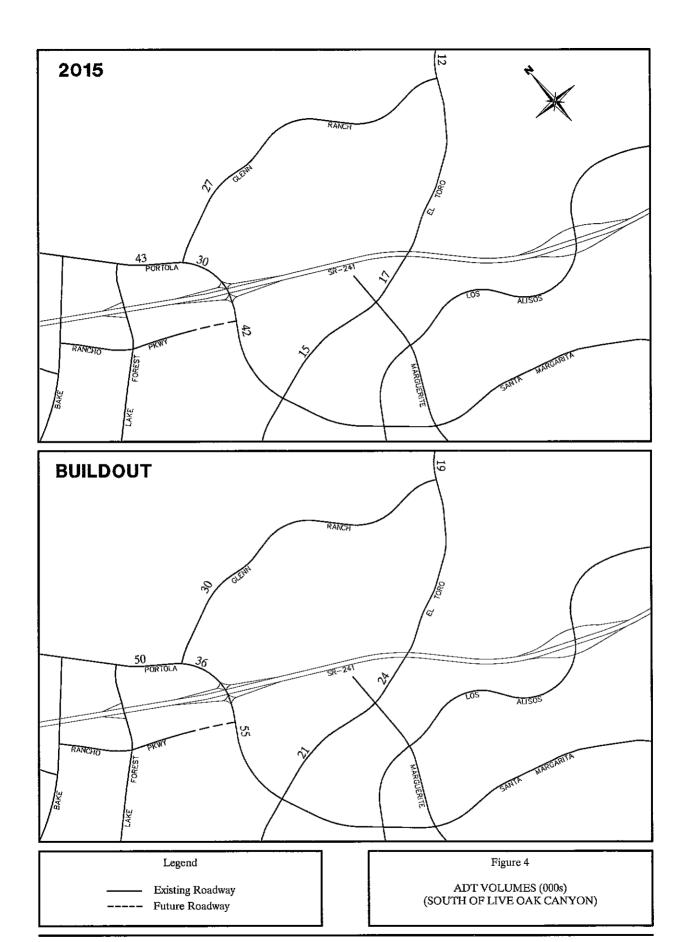




Figure 3

ADT VOLUMES (000s)
(NORTH OF LIVE OAK CANYON)



#### **Peak Hour Intersection Volumes**

Intersection	Southbound			Westbound			Northbound			Eastbound		
(N/S & E/W)	Left	Through	Right	Left	Through	Right	Left	Through	Right	Left	Through	Right
4. Glenn Ranch & Portola												
2015 AM	450	50	930	100	1380	320	60	20	30	460	570	40
2015 PM	350	20	690	60	760	360	100	20	60	1050	1530	70
Buildout AM	450	50	940	130	1730	310	60	20	30	450	530	20
Buildout PM	400	20	770	60	860	350	70	30	90	1140	1860	70
5. Portola & SR-241 Ramps												
2015 AM	220	630	250	110	0	1540	610	850	40	100	0	270
2015 PM	900	1020	80	30	0	340	300	890	100	180	0	450
Buildout AM	250	560	260	360	0	1840	560	910	90	230	0	290
Buildout PM	1200	1080	130	170	0	420	300	880	210	190	0	450
12. El Toro & Portola/Sta Margarita												
2015 AM	50	500	260	490	1610	20	310	170	300	50	620	370
2015 PM	330	570	640	430	1010	40	370	430	510	400	1260	650
Buildout AM	60	830	410	580	1950	20	450	180	280	70	640	430
Buildout PM	340	600	750	410	1150	50	490	670	490	590	1700	850
51. El Toro & Glenn	Ranch											
2015 AM	0	790	330	0	0	0	210	290	0	120	0	260
2015 PM	0	450	160	0	0	0	190	700	0	420	0	130
Buildout AM	0	1150	500	0	0	0	230	450	0	180	0	250
Buildout PM	0	550	270	0	0	0	180	1100	0	550	0	180
133. Marguerite & El	Toro							·				
2015 AM	10	10	0	610	460	10	370	10	240	10	190	210
2015 PM	10	40	10	420	170	10	140	40	580	10	370	420
Buildout AM	10	10	0	980	860	10	510	10	580	10	260	170
Buildout PM	10	40	10	760	270	10	110	40	960	10	730	490
151. Santiago Cyn/E	l Toro & Li	ve Oak Cyn										·
2015 AM	50	440	0	100	0	80	0	290	70	0	0	0
2015 PM	90	310	0	80	0	70	0	500	150	0	0	0
Buildout AM	50	780	0	100	0	80	0	460	80	0	0	0
Buildout PM	120	410	0	80	0	80	0	760	180	0	0	0

# Appendix E

Existing Plus Project Conditions Intersection Analysis Worksheets

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************* Intersection #1 PORTOLA PKWY (NS) @ GLENN RANCH RD (EW) ******************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.555
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 26 Level Of Service: A ********************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| ______|___| Volume Module: Initial Bse: 139 1480 319 324 609 58 80 20 38 313 47 636 Added Vol: 0 0 0 0 0 0 0 0 0 8 0 2 PasserByVol: 0 0 0 0 0 0 0 0 0 0 10 10 10 Initial Fut: 139 1480 322 325 609 58 80 20 38 331 57 648 PHF Volume: 139 1480 274 325 609 49 80 20 38 331 57 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 139 1480 274 325 609 49 80 20 38 331 57 0 0 0 FinalVolume: 139 1480 274 325 609 49 80 20 38 331 57 108 OvlAdjVol: ______| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.04 0.29 0.16 0.10 0.12 0.03 0.05 0.01 0.02 0.10 0.02 0.00 OvlAdjV/S: 0.06
Crit Moves: ****

Crit Moves:

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************************** Intersection #1 PORTOLA PKWY (NS) @ GLENN RANCH RD (EW) ************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.562
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 27 Level Of Service: A ******************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Volume Module: Base Vol: 50 852 209 671 1637 76 86 28 80 335 27 User Adj: 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 1.00 1.00 0.00 PHF Volume: 50 852 186 673 1637 65 86 28 80 341 27 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 50 852 186 673 1637 65 86 28 80 341 27 0 FinalVolume: 50 852 186 673 1637 65 86 28 80 341 27 0 OvlAdjVol: 16 Saturation Flow Module: -----| Capacity Analysis Module: Vol/Sat: 0.01 0.17 0.11 0.20 0.32 0.04 0.05 0.02 0.05 0.10 0.01 0.00 OvlAdiV/S: 0.01

***********************************

***

			<del>-</del>				<b>-</b> -				·	
Level Of Service Computation Report												
ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)												
**************************************												
Intersection #2 PORTOLA PKWY (NS) @ SR-S41 RAMPS (EW) ************************************												
Cycle (sec): 100 Critical Vol./Cap.(X): 0.415												
Loss Time (s	ec):		5				: xxxxxx					
Optimal Cycle			20			Level	А					
******************************												
Approach:	No:	rth B	ound	South Bound			$\mathbf{E}_{\cdot}$	ast Bo	ound	West Bound		
Movement:	L - T - R							- Т	- R	L - T - R		
					<del>-</del> -							
Control:	Pi	rotec	ted	P:	Protected					Protected		
Rights:		Igno:			Ignor	re		Igno:	re			
Min. Green:	_	0	0	0	0	0	0	0	0	0	0	0
Y+R:	4.0			4.0		4.0					4.0	4.0
Lanes:			0 1		2	0 1	1	0 0	0 1	2 (	0 (	0 1
Volume Module		1100	25	4.50								
Base Vol:		1196	27	178	585	206	131	_	119	75	0	648
Growth Adj:		1.00	1.00		1.00	1.00		1.00	1.00	1.00		1.00
Initial Bse:		1196	27	178	585	206	131	0	119	75	0	648
Added Vol:	0	0	2	0	0	8	3	0	0	1	0	0
PasserByVol: Initial Fut:	207	0 1196	0	170	0	0	0	0	0	0	0	0
User Adj:	1.00		29	178	585	214	134	0	119	76	0	648
PHF Adj:	1.00		0.00		1.00	0.00		1.00	0.00	1.00		0.00
PHF Volume:		1196	0.00	1,00 178	585	0.00		1.00	0.00	1.00		0.00
Reduct Vol:	307	1130	0	1 /8		0	134	0	0	76	0	0
Reduced Vol:		1196	0	1.78	0 585	0	1 2 4	0	0	0	0	0
PCE Adi:	1.00		0.00	1.00		0	134	0	0	76	0	0
MLF Adj:	1.00		0.00	1.00		0.00		1.00	0.00	1.00		0.00
FinalVolume:			0.00		585	0.00		1.00	0.00	1.00		0.00
			•	_			134	_	0 	76	0	0
Saturation Fl				1		1						
Sat/Lane:	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700	1700
Adjustment:	1.00	1.00	0.85	1.00	1.00	0.85	1.00	1.00	0.85	1,00	1.00	0.85
Lanes:	2.00	3.00	1.00	2.00	2.00	1.00	1.00	0.00	1.00	2.00	0.00	1.00
Final Sat.:	3400		1445	3400	3400	1445	1700	0	1445	3400	0	1445
~~~~~									1			
Capacity Analysis Module:												
Vol/Sat:		0.23	0.00	0.05		0.00		0.00	0.00	0.02	0.00	0.00
Crit Moves:	****				****		***				***	
******	****	****	*****	*****	****	*****	****	****	****	*****	****	****

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) Intersection #2 PORTOLA PKWY (NS) @ SR-S41 RAMPS (EW) ******************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.600 Loss Time (sec): 5
Optimal Cycle: 29 Average Delay (sec/veh): Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|-----||------||------| Volume Module: Base Vol: 137 764 46 545 1437 149 138 0 357 58 210 Initial Bse: 137 764 46 545 1437 149 138 0 357 58 0 210 Saturation Flow Module: Adjustment: 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 Lanes: 2.00 3.00 1.00 2.00 2.00 1.00 1.00 0.00 1.00 2.00 0.00 1.00 Final Sat.: 3400 5100 1445 3400 3400 1445 1700 0 1445 3400 0 1445 Capacity Analysis Module: Vol/Sat: 0.04 0.15 0.00 0.16 0.42 0.00 0.09 0.00 0.00 0.02 0.00 0.00 Crit Moves: **** **** **** **********************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ******* Intersection #3 SANTIAGO CANYON RD (NS) @ MODJESKA GRADE RD (EW) **************************** Average Delay (sec/veh): 0.6 Worst Case Level Of Service: B[14.6] ******************************** Approach: North Bound South Bound East Bound West Bound Movement: L-T-R L-T-R L-T-R
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include
 Include

 Lanes:
 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
 1 0 0 0 0 0
 Volume Module: 0 322 Base Vol: 10 0 292 0 0 n 28 Λ Initial Bse: 0 322
Added Vol: 0 13 0 PHF Volume: 0 372 11 0 330 0 0 0 0 31 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 372 11 0 330 0 0 0 0 31 0 -----|-----|------| Critical Gap Module: Capacity Module: Level Of Service Module: Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT Shared LOS: * * * * * * * * * * * * xxxxxx xxxxxx 14.6 ApproachDel: xxxxxx ApproachLOS: В ---Note: Queue reported is the number of cars per lane. ***********************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ************************* Intersection #3 SANTIAGO CANYON RD (NS) @ MODJESKA GRADE RD (EW) ************************* Average Delay (sec/veh): 0.4 Worst Case Level Of Service: B[14.7] Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R Movement: -----| Volume Module: 0 376 Base Vol: 38 2 326 0 0 0 Λ 16 Ω Initial Bse: 0 376 38 2 326 0 0 0 0 16 0
Added Vol: 0 9 0 0 15 0 0 0 0 0 0
PasserByVol: 0 0 0 0 0 0 0 0 0 0
Initial Fut: 0 385 38 2 341 0 0 0 0 16 0 0 PHF Volume: 0 407 40 2 361 0 0 0 0 17 0 2 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 407 40 2 361 0 0 0 17 0 2 -----| Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 4.1 xxxx xxxxx xxxxx xxxxx xxxxx 6.4 6.5 6.2 FollowUpTim:xxxxx xxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxxx xxxxx 3.5 4.0 3.3 Capacity Module: 448 xxxx xxxxx xxxx xxxx xxxx 772 772 1123 xxxx xxxxx xxxx xxxx xxxx 370 332 Cnflict Vol: xxxx xxxx xxxxx Level Of Service Module: LOS by Move: * * * * * * * * * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT SharedQueue:xxxxx xxxxx xxxxx 0.0 xxxx xxxxx xxxxx xxxxx xxxxx 0.2 xxxxx Shrd ConDel:xxxxx xxxx xxxxx 8.2 xxxx xxxxx xxxxx xxxxx xxxxx xxxxx 14.7 xxxxx ApproachDel: xxxxxx
ApproachLOS: * В *********************************** Note: Queue reported is the number of cars per lane. ****************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #4 SANTIAGO CANYON RD (NS) @ PROJECT ACCESS (EW) ********************************* Average Delay (sec/veh): 0.8 Worst Case Level Of Service: B[12.8] Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R Movement: -----|----|------| Control: Uncontrolled Uncontrolled Stop Sign Stop Sign
Rights: Include Include Include
Lanes: 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 -----|----|-----||------| Volume Module: 0 332 Base Vol: 0 0 320 0 0 0 0 0 13 13 PHF Volume: 0 332 11 5 320 0 0 0 29 0 13 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 332 11 5 320 0 0 0 0 29 0 Critical Gap Module: FollowUpTim:xxxxx xxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxxx xxxxx 3.5 xxxx 3.3 Capacity Module: Level Of Service Module: LOS by Move: * * * A * * * * B * B Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT Shared LOS: * * * * * * * * * * * * xxxxxx xxxxxx ApproachDel: xxxxx 12.8 ApproachLOS: В Note: Queue reported is the number of cars per lane. *******************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ******************* Intersection #4 SANTIAGO CANYON RD (NS) @ PROJECT ACCESS (EW) Average Delay (sec/veh): 0.6 Worst Case Level Of Service: B[14.1] ****************************** Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R -----|
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include

 Lanes:
 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1
 Volume Module: PHF Volume: 0 414 34 15 342 0 0 0 0 20 0 9 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 414 34 15 342 0 0 0 0 0 0 0 -----||----||-----||-----| Critical Gap Module: Critical Gp:xxxxx xxxxx xxxxx 4.1 xxxx xxxxx xxxxx xxxxx xxxxx 6.4 xxxx 6.2 FollowUpTim:xxxxx xxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxxx xxxxx 3.5 xxxx 3.3 Capacity Module: Level Of Service Module: Control Del:xxxxx xxxx xxxxx 8.2 xxxx xxxxx xxxxx xxxxx xxxxx 15.6 xxxx 10.7 LOS by Move: * * * * * * * * * C * B Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT Shared LOS: * * * * * * * * * * * * 14.1 ****** xxxxxx ApproachDel: xxxxxx ApproachLOS: В Note: Queue reported is the number of cars per lane. *****************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ****************** Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) ************************** Average Delay (sec/veh): 2.8 Worst Case Level Of Service: B[13.7] ******************* Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R Volume Module: 0 202 55 Base Vol: 41 316 0 72 0 Ω Λ Ο 72 0 0 0 0 0 0 1 Initial Fut: 72 67 -----||-----||-----| Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 4.1 xxxx xxxxx xxxxx xxxxx xxxxx 6.4 xxxx FollowUpTim:xxxxx xxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxxx xxxxx 3.5 xxxx _____| Capacity Module: 264 Potent Cap.: xxxx xxxx xxxxx 1279 xxxx xxxxx xxxx xxxxx xxxxx 389 xxxx 780 _____| | | Level Of Service Module: 2Way95thQ: xxxx xxxx xxxxx 0.1 xxxx xxxxx xxxx xxxx xxxxx 0.8 xxxx 0.3 Control Del:xxxxx xxxx xxxxx 7.9 xxxx xxxxx xxxxx xxxx xxxx 17.0 xxxx 1.0.1 A * * * * * LOS by Move: * * * С * В Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT xxxxx * ApproachDel: xxxxxx
ApproachLOS: * ************************** Note: Queue reported is the number of cars per lane. *****************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) ******************** Average Delay (sec/veh): 2.8 Worst Case Level Of Service: C[16.0] Approach: North Bound South Bound East Bound West Bound Movement: L-T-R L-T-R L-T-R Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Lanes: 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 Volume Module: Base Vol: 0 377 124 82 211 0 0 0 61 Initial Bse: 0 377 124 82 211 0 0 0 0 61 0
Added Vol: 0 32 0 1 19 0 0 0 0 0 0
PasserByVol: 0 0 0 0 0 0 0 0 0 0
Initial Fut: 0 409 124 83 230 0 0 0 0 61 0 0 PHF Volume: 0 418 127 85 235 0 0 0 0 62 0 64 Reduct Vol: 0 0 418 127 85 235 0 0 0 0 62 0 64 FinalVolume: 0 418 127 85 235 0 0 0 0 62 0 64 -----|----|-----||------| Critical Gap Module: Capacity Module: Potent Cap.: xxxx xxxx xxxxx 1035 xxxx xxxxx xxxx xxxx xxxx 318 xxxx Move Cap.: xxxx xxxx xxxxx 1035 xxxx xxxx xxxx xxxx xxxx 298 xxxx 589 Level Of Service Module: Control Del:xxxxx xxxx xxxxx 8.8 xxxx xxxxx xxxxx xxxxx 20.3 xxxx 11.9 LOS by Move: * * * * A * * * * * * * C * B Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT *
ApproachLOS:
******** ******************************* Note: Queue reported is the number of cars per lane. ******************************

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) *************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.510
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 24 Level Of Service: A ************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| Volume Module: Base Vol: 228 280 0 0 553 198 50 0 194 0 0 Initial Bse: 228 280 0 0 553 198 50 0 194 0 0 FinalVolume: 228 286 0 0 570 209 54 0 165 0 0 Saturation Flow Module: Lanes: 1.00 1.00 0.00 0.00 1.46 0.54 1.00 0.00 1.00 0.00 0.00 Final Sat.: 1700 1700 0 0 2488 912 1700 0 1700 0 0 Capacity Analysis Module: Vol/Sat: 0.13 0.17 0.00 0.00 0.23 0.23 0.03 0.00 0.10 0.00 0.00 Crit Moves: **** **** *****************************

_____ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) ****************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.497
Loss Time (sec): 5 Average Delay (sec/veh): xxxxx
Optimal Cycle: 30 Level Of Service: A ***************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____|__|__| 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 Lanes: Volume Module: PHF Volume: 165 501 0 0 353 74 259 0 145 0 0 0 Reduced Vol: 165 501 0 0 353 74 259 0 145 0 0 0 FinalVolume: 165 501 0 0 353 74 259 0 145 0 0 _____| Saturation Flow Module: -----||-----||-----||------| Capacity Analysis Module: Vol/Sat: 0.10 0.29 0.00 0.00 0.13 0.13 0.15 0.00 0.09 0.00 0.00 0.00 Crit Moves: ****

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) *************************** Intersection #7 MARGUERITE PKWY (NS) @ EL TORO RD (EW) ******************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.332
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 18 Level Of Service: A ********************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Volume Module: Base Vol: 298 7 257 1 7 3 2 135 120 444 387 Initial Bse: 298 7 257 1 7 3 2 135 120 444 387 Added Vol: 0 0 2 0 0 0 0 4 0 6 11 Added Vol: 0 0 2 0 0 0 0 4 0 6 11
PasserByVol: 0 0 0 0 0 0 0 0 0 0
Initial Fut: 298 7 259 1 7 3 2 139 120 450 398 0 2 User Adj: 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 1.00 PHF Volume: 298 7 220 1 7 3 2 139 102 450 398 2 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 298 7 220 1 7 3 2 139 102 450 398 2 FinalVolume: 298 7 220 1 7 3 2 139 102 450 398 2 0 Saturation Flow Module: Final Sat.: 3400 1700 1700 1700 3400 1700 3400 3400 1700 3400 3383 17 -----| Capacity Analysis Module: Vol/Sat: 0.09 0.00 0.13 0.00 0.00 0.00 0.04 0.06 0.13 0.12 0.12 UviAdjV/S: 0.00
Crit Moves: **** **** **** **** **********************************

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************************* Intersection #7 MARGUERITE PKWY (NS) @ EL TORO RD (EW) ******************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.431
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 21 Level Of Service: A ********************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----|----|-----||------|
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0

 Y+R:
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 4.0
 Lanes: 1 1 1 0 1 1 0 1 1 1 2 0 2 0 1 2 0 1 1 0 _____| ____| ____| _____| _____| _____| _____| _____| _____| _____| _____| Volume Module: Initial Bse: 138 36 431 15 41 16 7 291 299 352 177 Added Vol: 0 0 7 0 0 0 0 12 0 4 7 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 18 138 36 438 15 41 16 7 303 299 356 184 299 352 177 1.1 0 0 11 PHF Volume: 138 36 372 15 41 14 7 303 254 356 184 11 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 138 36 372 15 41 14 7 303 254 356 184 11 FinalVolume: 138 36 372 15 41 14 7 303 254 356 184 11 194 OvlAdjVol: Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.04 0.02 0.22 0.01 0.01 0.01 0.00 0.09 0.15 0.10 0.06 0.06 0.11 OvlAdjV/S: **** Crit Moves: **** *********** ______

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************************* Intersection #8 PORTOLA/SANTA MARGARITA PKWY (NS) & EL TORO RD (EW) ****************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.640
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 32 Level Of Service: B ************************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|-----|-----||------||------| 2 0 4 0 1 2 0 3 0 1 1 0 3 0 1 1 0 3 0 1 Lanes: Volume Module: Initial Bse: 601 1209 33 26 468 254 297 176 383 36 563
Added Vol: 0 0 1 1 0 0 0 2 0 2 6
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 601 1209 34 27 468 254 297 178 383 38 569 175 177 PHF Volume: 601 1209 29 27 468 216 297 178 0 38 569 150 n 150 FinalVolume: 601 1209 29 27 468 216 297 178 0 38 569 150 Saturation Flow Module: -----| Capacity Analysis Module: Vol/Sat: 0.18 0.18 0.02 0.01 0.09 0.13 0.17 0.03 0.00 0.02 0.11 0.09 Crit Moves: **** **** ****

EX + P (PM)Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) ************************** Intersection #8 PORTOLA/SANTA MARGARITA PKWY (NS) & EL TORO RD (EW) **************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.606
Loss Time (sec): 5 Average Delay (sec/veh): xxxxx
Optimal Cycle: 29 Level Of Service: B Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Ignore
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 2 0 4 0 1 2 0 3 0 1 1 0 3 0 1 1 0 3 0 1 Volume Module: Base Vol: 402 672 30 207 1154 418 267 407 653 20 223 User Adj: 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.00 1.00 1.00 0.85 PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 PHF Volume: 402 672 27 209 1154 355 267 414 0 21 227 92 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 402 672 27 209 1154 355 267 414 0 21 227 92 FinalVolume: 402 672 27 209 1154 355 267 414 0 21 227 92 -----[|-----| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.12 0.10 0.02 0.06 0.23 0.21 0.16 0.08 0.00 0.01 0.04 0.05

Appendix F

Interim (Year 2015) Without Project Conditions Intersection Analysis Worksheets

Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) ******************** Intersection #1 PORTOLA PKWY (NS) @ GLENN RANCH RD (EW) ***************************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.609
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 29 Level Of Service: B ************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|-----|------| Control: Protected Protected Protected Protected Rights: Ovl Include Include Ignore Min. Green: 0 0 0 0 0 0 0 0 0 0 Volume Module: Base Vol: 100 1380 320 460 570 40 60 20 30 450 50 930 Initial Bse: 100 1380 320 460 570 40 60 20 30 450 50 930 FinalVolume: 100 1380 272 460 570 34 60 20 30 460 60 0 42 _____| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.03 0.27 0.16 0.14 0.11 0.02 0.04 0.01 0.02 0.14 0.02 0.00 OvlAdjV/S: 0.02 Crit Moves: ****

-----Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************************** Intersection #1 PORTOLA PKWY (NS) @ GLENN RANCH RD (EW) ****************** Cycle (sec): 100 Critical Vol./Cap.(X): 0.646
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 32 Level Of Service: B ******************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Lanes: 2 0 3 0 1 2 0 3 0 1 1 0 1 1 0 2 0 2 0 1 -----|----||------||------| Volume Module: PHF Volume: 60 760 306 1050 1530 60 100 20 60 350 20 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 60 760 306 1050 1530 60 100 20 60 350 20 0 FinalVolume: 60 760 306 1050 1530 60 100 20 60 350 20 0 131 OvlAdjVol: Saturation Flow Module: _____| Capacity Analysis Module: Vol/Sat: 0.02 0.15 0.18 0.31 0.30 0.04 0.06 0.01 0.04 0.10 0.01 0.00 0.08 **** OvlAdjV/S: Crit Moves: ********************************** -----

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************************** Intersection #2 PORTOLA PKWY (NS) @ SR-S41 RAMPS (EW) ******************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.474
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 23 Level Of Service: A Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----|------|-----||------||-----|
 Control:
 Protected
 <th 2 0 3 0 1 2 0 2 0 1 1 0 0 0 1 2 0 0 0 1 Lanes Volume Module: PHF Volume: 610 850 0 220 630 0 100 0 0 110 0 0 Reduct Vol: 610 850 0 220 630 0 100 0 0 110 0 0 FinalVolume: 610 850 0 220 630 0 100 0 0 110 0 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.18 0.17 0.00 0.06 0.19 0.00 0.06 0.00 0.00 0.03 0.00 0.00

_____ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************************** Intersection #2 PORTOLA PKWY (NS) @ SR-S41 RAMPS (EW) ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.595
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 29 Level Of Service: A ********************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----||-----||------|
 Control:
 Protected
 <th Volume Module: Base Vol: 300 890 100 900 1020 80 180 0 450 30 PHF Volume: 300 890 0 900 1020 0 180 0 0 30 0 FinalVolume: 300 890 0 900 1020 0 180 0 0 30 0 Saturation Flow Module: Capacity Analysis Module: Crit Moves: **** **** **** **** *****************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) *********************** Intersection #3 SANTIAGO CANYON RD (NS) @ MODJESKA GRADE RD (EW) ******************* Average Delay (sec/veh): 0.6 Worst Case Level Of Service: C[15.1] ************************ Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R L-T-R _____| -----| Volume Module: 30 0 0 0 0 0 30 0 30 PHF Volume: 0 386 12 0 350 0 0 0 0 34 0 0 Reduct Vol: 0 0 386 12 0 350 0 0 0 0 0 34 0 0 FinalVolume: 0 386 12 0 350 0 0 0 0 34 0 0 _____| Critical Gap Module: _____ Capacity Module: Level Of Service Module: ************************** Note: Queue reported is the number of cars per lane. *************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ****************************** Intersection #3 SANTIAGO CANYON RD (NS) @ MODJESKA GRADE RD (EW) ********************************** Average Delay (sec/veh): 0.4 Worst Case Level Of Service: B[14.6] ************************************* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Rights: Include Include Include Include Lanes: 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 1! 0 0 -----| Volume Module: Base Vol: 0 376 38 2 326 0 0 0 0 16 0 _____ Critical Gap Module: FollowUpTim:xxxxx xxxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxx xxxxx 3.5 4.0 3.3 Capacity Module: -----| Level Of Service Module: 2Way95thQ: xxxx xxxx xxxxx Control Del:xxxxx xxxx xxxxx SharedQueue:xxxxx xxxxx xxxxx 0.0 xxxx xxxxx xxxxx xxxxx xxxxx 0.2 xxxxx Shrd ConDel:xxxxx xxxxx xxxxx 8.2 xxxx xxxxx xxxxx xxxxx xxxxx 14.6 xxxxx Note: Queue reported is the number of cars per lane. *************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ****************************** Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) ************************************* Average Delay (sec/veh): 3.8 Worst Case Level Of Service: C[19.3] ******************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Lanes: 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 Volume Module: Base Vol: 0 290 70 50 440 0 0 0 0 100 0 Critical Gap Module: Capacity Module: _____| ____| ____| _____| _____| _____| _____| _____| _____| _____| _____| Level Of Service Module: 0.48.2 xxxx xxxxx xxxxx xxxx xxxxx 26.0 xxxx Control Del:xxxxx xxxx xxxxx LOS by Move: * * * * A * * * * * * D * B
Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT ********************************** Note: Queue reported is the number of cars per lane. ********************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ***************************** Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) ******************************** Average Delay (sec/veh): 3.4 Worst Case Level Of Service: C[21.4] ********************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Include Rights: Include Include Include Include Lanes: 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 Volume Module: Base Vol: 0 500 150 90 310 0 0 0 Initial Bse: 0 500 150 90 310 0 0 0 80 0 70 Critical Gap Module: FollowUpTim:xxxxx xxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxx xxxxx 3.5 xxxx 3.3 Capacity Module: Level Of Service Module: 9.2 xxxx xxxxx xxxx xxxx xxxx 28.7 xxxx 13.0 Control Del:xxxxx xxxx xxxxx LOS by Move: * * * * A * * * * * * D * B Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT ************************* Note: Queue reported is the number of cars per lane. *******************************

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.633
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 31 Level Of Service: B Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| Volume Module: Base Vol: 210 290 0 0 790 330 120 0 260 0 0 FinalVolume: 210 290 0 0 790 330 120 0 221 0 0 0 Saturation Flow Module: _____| Capacity Analysis Module: Vol/Sat: 0.12 0.17 0.00 0.00 0.33 0.33 0.07 0.00 0.13 0.00 0.00 0.00

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************** Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.709
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 80 Level Of Service: C ***************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 190 700 0 0 450 160 420 0 130 0 n Initial Bse: 190 700 0 0 450 160 420 0 130 0 0 PHF Volume: 190 700 0 0 450 160 420 0 111 0 0 0 Reduced Vol: 190 700 0 0 450 160 420 0 111 0 0 0 FinalVolume: 190 700 0 0 450 160 420 0 111 0 0 -----| Saturation Flow Module: -----|----|-----||-------||-------| Capacity Analysis Module: Vol/Sat: 0.11 0.41 0.00 0.00 0.18 0.18 0.25 0.00 0.07 0.00 0.00 0.00 Crit Moves: **** *******************

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ********************************* Intersection #7 MARGUERITE PKWY (NS) @ EL TORO RD (EW) ********************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.562
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 27 Level Of Service: A Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Lanes: 1 1 1 0 1 1 0 1 1 1 2 0 2 0 1 2 0 1 1 0 Volume Module: PHF Volume: 140 40 493 10 40 9 10 370 357 420 170 10 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 140 40 493 10 40 9 10 370 357 420 170 10 FinalVolume: 140 40 493 10 40 9 10 370 357 420 170 10 283 OvlAdjVol: Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.04 0.02 0.29 0.01 0.01 0.01 0.00 0.11 0.21 0.12 0.05 0.05 0.17 OvlAdjV/S: *** **** Crit Moves: *******************************

_______ Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) ************************ Intersection #8 PORTOLA/SANTA MARGARITA PKWY (NS) & EL TORO RD (EW) ************************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.691
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 36 Level Of Service: B Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 2 0 4 0 1 2 0 3 0 1 1 0 3 0 1 1 0 3 0 1 -----| Volume Module: Base Vol: 490 1610 20 50 620 370 310 170 300 50 500 260 Initial Bse: 490 1610 20 50 620 370 310 170 300 50 500 260 FinalVolume: 490 1610 17 50 620 315 310 170 0 50 500 221 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.14 0.24 0.01 0.01 0.12 0.19 0.18 0.03 0.00 0.03 0.10 0.13 Crit Moves: **** **** **** ************************ _____

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ***************************** Intersection #8 PORTOLA/SANTA MARGARITA PKWY (NS) & EL TORO RD (EW) ***************************** Cycle (sec): 100 Critical Vol./Cap.(X): 1.039
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 180 Level Of Service: F Critical Vol./Cap.(X): 1.039 ************************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____|
 Control:
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Ignore
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 2 0 4 0 1 2 0 3 0 1 1 0 3 0 1 1 0 3 0 1 Lanes: _____|__|__| Volume Module: 640 PHF Volume: 430 1010 34 400 1260 553 370 430 0 330 570 544 FinalVolume: 430 1010 34 400 1260 553 370 430 0 330 570 544 -----|----|-----| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.13 0.15 0.02 0.12 0.25 0.33 0.22 0.08 0.00 0.19 0.11 0.32 ********************************

Appendix G

Interim (Year 2015) With Project Conditions Intersection Analysis Worksheets

Capacity Analysis Module:

OvlAdjV/S: 0.03 Crit Moves: ****

_______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************* Intersection #1 PORTOLA PKWY (NS) @ GLENN RANCH RD (EW) ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.609 Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx Optimal Cycle: 29 Level Of Service: B Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Include
 Include
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: Base Vol: 100 1380 320 460 570 40 60 20 30 450 50 930 Initial Bse: 100 1380 320 460 570 40 60 20 30 450 50 930 Added Vol: 0 0 3 1 0 0 0 0 8 0 2

PasserByVol: 0 0 0 0 0 0 0 0 0 0 0

Initial Fut: 100 1380 323 461 570 40 60 20 30 458 50 932

User Adj: 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 1.00 1.00 0.00 FinalVolume: 100 1380 275 461 570 34 60 20 30 458 50 46 OvlAdjVol: Saturation Flow Module: Lanes: 2.00 3.00 1.00 2.00 3.00 1.00 1.00 1.00 1.00 2.00 2.00 1.00 Final Sat.: 3400 5100 1700 3400 5100 1700 1700 1700 1700 3400 3400 1700 _____|

Vol/Sat: 0.03 0.27 0.16 0.14 0.11 0.02 0.04 0.01 0.02 0.13 0.01 0.00

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ******************************** Intersection #1 PORTOLA PKWY (NS) @ GLENN RANCH RD (EW) ************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.648
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 32 Level Of Service: B *********************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R _____| ___| ___| ___| ___| ___| ___| ___| ___| ___| ___| ___| ___| __| ___| Volume Module: Base Vol: 60 760 360 1050 1530 70 100 20 60 350 20 690 Initial Bse: 60 760 360 1050 1530 70 100 20 60 350 20 690 Added Vol: 0 0 10 2 0 0 0 0 0 6 0 1
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 60 760 370 1052 1530 70 100 20 60 356 20 691 137 OvlAdiVol: -----|----|-----||-------| Saturation Flow Module: Lanes: 2.00 3.00 1.00 2.00 3.00 1.00 1.00 1.00 1.00 2.00 2.00 1.00 Final Sat.: 3400 5100 1700 3400 5100 1700 1700 1700 1700 3400 3400 1700 Capacity Analysis Module: Vol/Sat: 0.02 0.15 0.19 0.31 0.30 0.04 0.06 0.01 0.04 0.10 0.01 0.00 0.08 OwlAdiV/S: Crit Moves: ******************************** Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ************************* Intersection #2 PORTOLA PKWY (NS) @ SR-S41 RAMPS (EW) ******************* Cycle (sec): 100 Critical Vol./Cap.(X): 0.475
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 23 Level Of Service: A ************************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Ignore
 Ignore
 Ignore
 Ignore
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 _____|__| Volume Module: Base Vol: 610 850 40 220 630 250 100 0 270 110 0 1540 Initial Bse: 610 850 40 220 630 250 100 0 270 110 0 1540 Added Vol: 0 0 2 0 0 8 3 0 0 1 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1540 Saturation Flow Module: Lanes: 2.00 3.00 1.00 2.00 2.00 1.00 1.00 0.00 1.00 2.00 0.00 1.00 Final Sat.: 3400 5100 1700 3400 3400 1700 1700 0 1700 3400 0 1700 _____| Capacity Analysis Module: Vol/Sat: 0.18 0.17 0.00 0.06 0.19 0.00 0.06 0.00 0.00 0.03 0.00 0.00 Crit Moves: **** **** **** *************************

Capacity Analysis Module:

-----______ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) ****************************** Intersection #2 PORTOLA PKWY (NS) @ SR-S41 RAMPS (EW) ************************ Cycle (sec): 100 Critical Vol./Cap.(X): 0.601
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 29 Level Of Service: B Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R
 Control:
 Protected
 <th Volume Module: Base Vol: 300 890 100 900 1020 80 180 0 450 30 0 340 Initial Bse: 300 890 100 900 1020 80 180 0 450 30 0 340 -----|----|-----||------| Saturation Flow Module: Lanes: 2.00 3.00 1.00 2.00 2.00 1.00 1.00 0.00 1.00 2.00 0.00 1.00 Final Sat.: 3400 5100 1700 3400 3400 1700 1700 0 1700 3400 0 1700

Vol/Sat: 0.09 0.17 0.00 0.26 0.30 0.00 0.11 0.00 0.00 0.01 0.00 Crit Moves: **** **** **** **********************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #3 SANTIAGO CANYON RD (NS) @ MODJESKA GRADE RD (EW) ********** Average Delay (sec/veh): 0.6 Worst Case Level Of Service: C[15.4] **************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----||------||------| Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Lanes: 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 Volume Module: Base Vol: 0 322 10 0 292 0 0 0 Initial Bse: 0 348 11 0 315 0 0 0 0 30 0
Added Vol: 0 13 0 0 5 0 0 0 0 0 0
PasserByVol: 0 0 0 0 0 0 0 0 0 0 0
Initial Fut: 0 361 11 0 320 0 0 0 0 30 0 PHF Volume: 0 400 12 0 356 0 0 0 0 34 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 400 12 0 356 0 0 0 0 34 0 0 -----| Critical Gap Module: ------||-----||------| Capacity Module: Level Of Service Module: LOS by Move: * * * * * * * * C * * Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT LT - LTR - RT Note: Queue reported is the number of cars per lane. *******************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ********** Intersection #3 SANTIAGO CANYON RD (NS) @ MODJESKA GRADE RD (EW) ************************ Average Delay (sec/veh): 0.4 Worst Case Level Of Service: B[14.9] ****************************** Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----|
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include

 Lanes:
 0 0 1 0 1
 0 1 0 0 0
 0 0 0 0 0
 0 0 1 0 0
 -----||----||-----||------| Volume Module: Base Vol: 0 376 38 2 326 0 0 0 0 16 0 Initial Bse: 0 406 41 2 352 0 0 0 17 0 PHF Volume: 0 415 41 2 367 0 0 0 17 0 2 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 415 41 2 367 0 0 0 0 17 0 _____|___|___| Critical Gap Module: Capacity Module: 642 642 Level Of Service Module: SharedQueue:xxxxx xxxx xxxxx 0.0 xxxx xxxxx xxxxx xxxxx xxxxx xxxxx 0.2 xxxxx Shrd ConDel:xxxxx xxxx xxxxx 8.2 xxxx xxxxx xxxxx xxxxx xxxxx 14.9 xxxxx *********************************** Note: Queue reported is the number of cars per lane. **************************

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) ******************************* Intersection #4 SANTIAGO CANYON RD (NS) @ PROJECT ACCESS (EW) *********************************** Average Delay (sec/veh): 0.8 Worst Case Level Of Service: B[13.4] ************************************ Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||----||-----||------|
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include
 Include

 Lanes:
 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1
 1 0 0 0 0 1
 ~~~~~~| -----| | -----| | -----| | -----| Volume Module: Base Vol: 0 332 0 0 320 0 0 0 0 0 Ω Initial Bse: 0 359 0 0 346 0 0 0 0 0 0 Added Vol: 0 0 11 5 0 0 0 0 29 0 13 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 5 346 0 0 0 0 29 0 13 PHF Volume: 0 359 11 5 346 0 0 0 0 29 0 13 Reduct Vol: 0 0 359 11 5 346 0 0 0 0 29 0 13 Critical Gap Module: 6.2 Capacity Module: 359 690 Level Of Service Module: Control Del:xxxxx xxxx xxxxx 8.0 xxxx xxxxx xxxxx xxxxx xxxxx 14.7 xxxx 10.3 LOS by Move: \* \* \* \* A \* \* \* \* \* \* B \* B
Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT xxxxxx ApproachLOS: \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Note: Queue reported is the number of cars per lane. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #4 SANTIAGO CANYON RD (NS) @ PROJECT ACCESS (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 0.6 Worst Case Level Of Service: B[ 14.8] \*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_\_|\_\_|\_\_\_| Volume Module: Base Vol: 0 414 0 0 342 0 0 0 0 Λ Initial Bse: 0 447 0 0 369 0 0 0 0 0 0 PHF Volume: 0 447 34 15 369 0 0 0 0 0 0 0 9 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 447 34 15 369 0 0 0 0 0 0 0 9 Critical Gap Module: Critical Gp:xxxxx xxxxx xxxxx 4.1 xxxx xxxxx xxxxx xxxxx xxxxx 6.4 xxxx 6.2 FollowUpTim:xxxxx xxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxx xxxx xxxx 3.5 xxxx \_\_\_\_\_| Capacity Module: 447 Potent Cap.: xxxx xxxx xxxxx 1092 xxxx xxxxx xxxx xxxx xxxx xxxx 335 xxxx 616 Move Cap.: xxxx xxxx xxxxx 1092 xxxx xxxxx xxxx xxxx xxxx 332 xxxx 616 -----| Level Of Service Module: Control Del:xxxxx xxxx xxxxx 8.3 xxxx xxxxx xxxxx xxxxx xxxxx 16.6 xxxx 10.9 LOS by Move: \* \* \* \* A \* \* \* \* \* \* C \* B Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT \*
ApproachLOS:
\*\*\*\*\*\*\*\* xxxxx В \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Note: Queue reported is the number of cars per lane. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\_\_\_\_\_\_

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 3.9 Worst Case Level Of Service: C[ 20.6] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||----||-----||------| 
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include

 Lanes:
 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1
 -----| Volume Module: Base Vol: 0 290 70 50 440 0 0 0 0 100 0 Initial Bse: 0 290 70 50 440 0 0 0 100 0 80 Added Vol: 0 10 0 2 27 0 0 0 0 0 0 1 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 1 Initial Fut: 0 300 70 52 467 0 0 0 0 100 0 81 PHF Volume: 0 330 77 57 514 0 0 0 0 110 0 89 Reduct Vol: 0 0 330 77 57 514 0 0 0 0 110 0 89 FinalVolume: 0 330 77 57 514 0 0 0 0 110 0 89 Critical Gap Module: \_\_\_\_\_|\_\_| Capacity Module: Level Of Service Module: Control Del:xxxxx xxxxx xxxxx 8.3 xxxx xxxxx xxxxx xxxxx xxxxx 28.3 xxxx 11.1 ApproachDel: xxxxxx ApproachLOS: \* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Note: Queue reported is the number of cars per lane. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 3.5 Worst Case Level Of Service: C[ 23.0] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound L-T-R L-T-R Movement: -----| 
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include

 Lanes:
 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1
 1 0 0 0 1
 Volume Module: Base Vol: 0 500 150 90 310 0 0 0 80 PHF Volume: 0 532 150 91 329 0 0 0 0 80 0 72 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 532 150 91 329 0 0 0 0 80 0 72 Critical Gap Module: Capacity Module: \_\_\_\_\_| Level Of Service Module: Note: Queue reported is the number of cars per lane. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.641
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 32 Level Of Service: B Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_| \_\_\_\_\_\_|\_\_\_| Volume Module:
Base Vol: 210 290 0 0 790 330 120 0 260 0 0 Initial Bse: 210 290 0 0 790 330 120 0 260 0 0 Added Vol: 0 6 0 0 17 11 4 0 0 0 0 0 0 PasserByVol: 0 0 0 0 807 341 124 0 260 0 0 0 -----| Saturation Flow Module: Lanes: 1.00 1.00 0.00 0.00 1.41 0.59 1.00 0.00 1.00 0.00 0.00 0.00 Final Sat.: 1700 1700 0 0 2390 1010 1700 0 1700 0 0 -----||----||-----| Capacity Analysis Module: Vol/Sat: 0.12 0.17 0.00 0.00 0.34 0.34 0.07 0.00 0.13 0.00 0.00 0.00 Crit Moves: \*\*\*\*

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.728
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 95 Level Of Service: C \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_| \_\_\_\_\_| Volume Module: Base Vol: 190 700 0 0 450 160 420 0 130 0 0 Initial Bse: 190 700 0 0 450 160 420 0 130 0 0 FinalVolume: 190 720 0 0 462 167 432 0 111 0 0 \_\_\_\_\_| Saturation Flow Module: Lanes: 1.00 1.00 0.00 0.00 1.47 0.53 1.00 0.00 1.00 0.00 0.00 Final Sat.: 1700 1700 0 0 2497 903 1700 0 1700 0 0 -----| Capacity Analysis Module: Vol/Sat: 0.11 0.42 0.00 0.00 0.18 0.19 0.25 0.00 0.07 0.00 0.00 Crit Moves: \*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\* Intersection #7 MARGUERITE PKWY (NS) @ EL TORO RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.451
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 22 Level Of Service: A \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_| -----| Volume Module: Base Vol: 370 10 240 10 10 0 10 190 210 610 460 10 Initial Bse: 370 10 240 10 10 0 10 190 210 610 460 10 FinalVolume: 370 10 206 10 10 0 10 194 179 616 471 10 0 \_\_\_\_\_|\_\_|\_\_| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.11 0.01 0.12 0.01 0.00 0.00 0.00 0.06 0.11 0.18 0.14 0.14 OvlAdjV/S: 0.00 Crit Moves: \*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #7 MARGUERITE PKWY (NS) @ EL TORO RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.565
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 27 Level Of Service: A \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Volume Module: Base Vol: 140 40 580 10 40 10 10 370 420 420 170 10 Initial Bse: 140 40 580 10 40 10 10 370 420 420 170 10 287 OvlAdiVol: \_\_\_\_\_| Saturation Flow Module: Final Sat.: 3400 1700 1700 1700 3400 1700 3400 3400 1700 3400 3218 182 -----| Capacity Analysis Module: Vol/Sat: 0.04 0.02 0.29 0.01 0.01 0.01 0.00 0.11 0.21 0.12 0.05 0.06 0.17 \*\*\* OvlAdiV/S: Crit Moves: \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* \_\_\_\_\_\_

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #8 PORTOLA/SANTA MARGARITA PKWY (NS) & EL TORO RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.692
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 36 Level Of Service: B Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----| 
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Include
 Include
 Ignore
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: Base Vol: 490 1610 20 50 620 370 310 170 300 50 500 260 Initial Bse: 490 1610 20 50 620 370 310 170 300 50 500 260 \_\_\_\_\_|\_\_| Saturation Flow Module: Lanes: 2.00 4.00 1.00 2.00 3.00 1.00 1.00 3.00 1.00 1.00 3.00 1.00 Final Sat.: 3400 6800 1700 3400 5100 1700 1700 5100 1700 1700 5100 1700 Capacity Analysis Module: Vol/Sat: 0.14 0.24 0.01 0.02 0.12 0.19 0.18 0.03 0.00 0.03 0.10 0.13 Crit Moves: \*\*\*\* \*\*\*\* \*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #8 PORTOLA/SANTA MARGARITA PKWY (NS) & EL TORO RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 1.040
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 180 Level Of Service: F Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|------| Volume Module: Base Vol: 430 1010 40 400 1260 650 370 430 510 330 570 640 Initial Bse: 430 1010 40 400 1260 650 370 430 510 330 570 640 FinalVolume: 430 1010 36 402 1260 553 370 437 0 331 574 545 Saturation Flow Module: Lanes: 2.00 4.00 1.00 2.00 3.00 1.00 1.00 3.00 1.00 1.00 3.00 1.00 Final Sat.: 3400 6800 1700 3400 5100 1700 1700 5100 1700 1700 5100 1700 Capacity Analysis Module: Vol/Sat: 0.13 0.15 0.02 0.12 0.25 0.33 0.22 0.09 0.00 0.19 0.11 0.32 Crit Moves: \*\*\*\* \*\*\*\* \*\*\*\*

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

## **Appendix H**

Buildout (Year 2035) Without Project Conditions Intersection Analysis Worksheets \_\_\_\_\_\_\_

Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #1 PORTOLA PKWY (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.672
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 34 Level Of Service: B \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| 2 0 3 0 1 2 0 3 0 1 1 0 1 1 0 2 0 2 0 1 Lanes: Volume Module: Base Vol: 130 1730 310 450 530 20 60 20 30 450 50 940 940 User Adj: 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 1.00 1.00 1.00 0.00 PHF Adj: 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 PHF Volume: 130 1730 264 450 530 17 60 20 30 450 50 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 130 1730 264 450 530 17 60 20 30 450 50 0 FinalVolume: 130 1730 264 450 530 17 60 20 30 450 50 0 38 OvlAdjVol: Saturation Flow Module: \_\_\_\_\_| Capacity Analysis Module: Vol/Sat: 0.04 0.34 0.16 0.13 0.10 0.01 0.04 0.01 0.02 0.13 0.01 0.00 0.02 \*\*\*\* OvlAdiV/S: Crit Moves: \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #1 PORTOLA PKWY (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.725
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 40 Level Of Service: C \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 
 Control:
 Protected
 <th 2 0 3 0 1 2 0 3 0 1 1 0 1 1 0 2 0 2 0 1 Volume Module: Base Vol: 60 860 350 1140 1860 70 70 30 90 400 20 770 Initial Bse: 60 860 350 1140 1860 70 70 30 90 400 20 770 FinalVolume: 60 860 298 1140 1860 60 70 30 90 400 20 0 OvlAdjVol: 97 \_\_\_\_\_| Saturation Flow Module: \_\_\_\_\_|\_\_|\_\_| Capacity Analysis Module: Vol/Sat: 0.02 0.17 0.17 0.34 0.36 0.04 0.04 0.02 0.05 0.12 0.01 0.00 OvlAdjV/S: 0.06 Crit Moves: \*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #2 PORTOLA PKWY (NS) @ SR-S41 RAMPS (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.515 Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx Optimal Cycle: 24 Level Of Service: A \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------| 
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Rights:
 Ignore
 Ignore
 Ignore
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O</t Volume Module: Base Vol: 560 910 90 250 560 260 230 0 290 360 0 1840 Initial Bse: 560 910 90 250 560 260 230 0 290 360 0 1840 FinalVolume: 560 910 0 250 560 0 230 0 0 360 0 Saturation Flow Module: Adjustment: 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 Lanes: 2.00 3.00 1.00 2.00 2.00 1.00 1.00 0.00 1.00 2.00 0.00 1.00 Final Sat.: 3400 5100 1445 3400 3400 1445 1700 0 1445 3400 0 1445 Capacity Analysis Module: Vol/Sat: 0.16 0.18 0.00 0.07 0.16 0.00 0.14 0.00 0.00 0.11 0.00 0.00 Crit Moves: \*\*\*\* \*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #2 PORTOLA PKWY (NS) @ SR-S41 RAMPS (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.687
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 36 Level Of Service: B \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----| Volume Module: Base Vol: 300 880 210 1200 1080 130 190 0 450 170 0 420 Initial Bse: 300 880 210 1200 1080 130 190 0 450 170 0 420 FinalVolume: 300 880 0 1200 1080 0 190 0 0 170 0 0 -----| Saturation Flow Module: -----| Capacity Analysis Module: Vol/Sat: 0.09 0.17 0.00 0.35 0.32 0.00 0.11 0.00 0.00 0.05 0.00 0.00 Crit Moves: \*\*\*\* \*\*\*\* \*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #3 SANTIAGO CANYON RD (NS) @ MODJESKA GRADE RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 0.8 Worst Case Level Of Service: C[ 18.5] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Lanes: 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 -----|----|-----| Volume Module: Base Vol: 0 322 10 0 292 0 0 0 0 28 0 Initial Bse: 0 477 15 0 432 0 0 0 41 0 0 Added Vol: 0 0 0 0 0 0 0 0 0 0 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 Initial Fut: 0 477 15 0 432 0 0 0 0 41 0 PHF Volume: 0 477 15 0 432 0 0 0 0 41 0 0 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 477 15 0 432 0 0 0 0 0 0 0 0 -----| Critical Gap Module: \_\_\_\_\_| Capacity Module: -----|----|------| Level Of Service Module: LOS by Move: \* \* \* \* \* \* \* \* \* \* \* \* LT - LTR - RT Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT ApproachDel: xxxxxx ApproachLOS: \* XXXXXX XXXXXX 18.5 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Note: Queue reported is the number of cars per lane.

\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\* Intersection #3 SANTIAGO CANYON RD (NS) @ MODJESKA GRADE RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 0.5 Worst Case Level Of Service: C[ 19.7] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include
 Include

 Lanes:
 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1! 0 0
 Volume Module: Base Vol: 0 376 38 2 326 0 0 0 0 16 0 Initial Bse: 0 556 56 3 482 0 0 0 24 0 3 PHF Volume: 0 556 56 3 482 0 0 0 0 24 0 3 Reduct Vol: 0 0 556 56 3 482 0 0 0 0 24 0 3 FinalVolume: 0 556 56 3 482 0 0 0 0 24 0 3 Critical Gap Module: 6.2 \_\_\_\_\_| Capacity Module: 534 \_\_\_\_\_|\_\_|\_\_| Level Of Service Module: SharedQueue:xxxxx xxxxx xxxxx 0.0 xxxx xxxxx xxxxx xxxxx xxxxx 0.3 xxxxx ApproachDel: xxxxxx
ApproachLOS: \* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Note: Queue reported is the number of cars per lane. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 5.0 Worst Case Level Of Service: E[ 40.5] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|-----| Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Rights: Include Include Include Include Lanes: 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 1 -----||-----||-----| Volume Module: Base Vol: 0 460 80 50 780 0 0 0 Initial Bse: 0 460 80 50 780 0 0 0 100 0 80 Critical Gap Module: Critical Gp:xxxxx xxxxx xxxxx 4.1 xxxx xxxxx xxxxx xxxxx xxxxx 6.4 xxxx 6.2 FollowUpTim:xxxxx xxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxx xxxxx 3.5 xxxx 3.3 Capacity Module: Potent Cap.: xxxx xxxx xxxxx 1039 xxxx xxxxx xxxx xxxx xxxxx 161 xxxx 575 Move Cap.: xxxx xxxx xxxxx 1039 xxxx xxxxx xxxxx xxxxx xxxxx 155 xxxx 575 Level Of Service Module: 0.5 ApproachDel: xxxxxx
ApproachLOS: \* \* Note: Queue reported is the number of cars per lane. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.568
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 27 Level Of Service: A \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||------||-------| 
 Control:
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Permitted
 Include
 FinalVolume: 0 460 80 50 780 0 0 0 100 0 68 Saturation Flow Module: 

 Sat/Lane:
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700
 1700 1700 -----|----||------| Capacity Analysis Module: Vol/Sat: 0.00 0.32 0.32 0.03 0.46 0.00 0.00 0.00 0.00 0.06 0.00 0.04 Crit Moves: \*\*\*\* \*\*\*\* \*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 5.7 Worst Case Level Of Service: F[ 50.1] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R\_\_\_\_\_| Volume Module: Base Vol: 0 760 180 120 410 0 0 0 0 80 Ω 80 Critical Gap Module: Critical Gp:xxxxx xxxxx xxxxx 4.1 xxxx xxxxx xxxxx xxxxx xxxxx 6.4 xxxx 6.2 FollowUpTim:xxxxx xxxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxxx xxxxx 3.5 xxxx 3.3 -----| Capacity Module: 850 Level Of Service Module: Control Del:xxxxx xxxx xxxxx 10.8 xxxx xxxxx xxxxx xxxxx xxxx 82.5 xxxx LOS by Move: \* \* \* B \* \* \* \* \* F \* C Movement: LT - LTR - RT LT - LTR - RT LT - LTR - RT Note: Queue reported is the number of cars per lane. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X):
Loss Time (sec): 5 Average Delay (sec/veh):
Optimal Cycle: 39 Level Of Service: Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R Volume Module: Base Vol: 0 760 180 120 410 0 0 0 0 80 0 \_\_\_\_\_|\_\_|\_\_| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.00 0.55 0.55 0.07 0.24 0.00 0.00 0.00 0.00 0.05 0.00 0.04 Crit Moves: \*\*\*\* \*\*\*\*

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.796
Loss Time (sec): 5 Average Delay (sec/veh): xxxxx
Optimal Cycle: 51 Level Of Service: C \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||-----| -----| Volume Module: Volume Module: Base Vol: 230 450 0 0 1150 500 180 0 250 0 0 PHF Volume: 230 450 0 0 1150 500 180 0 213 0 0 Saturation Flow Module: Final Sat.: 1700 1700 0 0 2370 1030 1700 0 1700 0 0 Capacity Analysis Module: Vol/Sat: 0.14 0.26 0.00 0.00 0.49 0.49 0.11 0.00 0.13 0.00 0.00 Crit Moves: \*\*\*\* \*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.796
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 51 Level Of Service: C \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 
 Control:
 Protected
 Permitted
 Split Phase
 Split Phase

 Rights:
 Include
 Include
 Ovl
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 -----||-----||------| Volume Module: PHF Volume: 230 450 0 0 1150 500 180 0 213 0 0 0 Reduct Vol: 0 0 0 0 1150 500 180 0 213 0 0 0 0 Reduced Vol: 230 450 0 0 1150 500 180 0 213 0 0 \_\_\_\_\_|\_\_|\_\_| Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.14 0.26 0.00 0.00 0.49 0.49 0.05 0.00 0.13 0.00 0.00 0.00 Crit Moves: \*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\_\_\_\_\_

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 1.021
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 180 Level Of Service: F \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|;------|;------| 1 0 1 0 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 Lanes: Volume Module: 0 บ 0 าเ PHF Volume: 180 1100 0 0 550 270 550 0 153 0 0 FinalVolume: 180 1100 0 0 550 270 550 0 153 0 0 Saturation Flow Module: \_\_\_\_\_|\_\_|\_\_| Capacity Analysis Module: Vol/Sat: 0.11 0.65 0.00 0.00 0.24 0.24 0.32 0.00 0.09 0.00 0.00 0.00 Crit Moves: \*\*\*\*

Crit Moves: \*\*\*\*

Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx Optimal Cycle: 180 Level Of Service: D Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_|\_\_||-\_-----| \_\_\_\_\_| Volume Module: PHF Volume: 180 1100 0 0 550 270 550 0 153 0 0 0 Reduct Vol: 0 0 0 0 550 270 550 0 153 0 0 0 Reduced Vol: 180 1100 0 0 550 270 550 0 153 0 0 0 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.11 0.65 0.00 0.00 0.24 0.24 0.16 0.00 0.09 0.00 0.00 0.00

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #7 MARGUERITE PKWY (NS) @ EL TORO RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.571
Loss Time (sec): 5 Average Delay (sec/veh): xxxxx
Optimal Cycle: 27 Level Of Service: A Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| 
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 1 1 1 0 1 1 0 1 1 1 2 0 2 0 1 2 0 1 1 0 Lanes: Volume Module: PHF Volume: 510 10 493 10 10 0 10 260 145 980 860 10 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 510 10 493 10 10 0 10 260 145 980 860 10 FinalVolume: 510 10 493 10 10 0 10 260 145 980 860 10 OvlAdjVol: 3 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.15 0.01 0.29 0.01 0.00 0.00 0.00 0.08 0.09 0.29 0.26 0.26 OvlAdjV/S: 0.00 Crit Moves: \*\*\*\* \*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #7 MARGUERITE PKWY (NS) @ EL TORO RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.787
Loss Time (sec): 5 Average Delay (sec/veh): xxxxx
Optimal Cycle: 49 Level Of Service: C Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 1 1 1 0 1 1 0 1 1 1 2 0 2 0 1 2 0 1 1 0 Lanes: \_\_\_\_\_|\_\_|\_\_\_| Volume Module: Base Vol: 110 40 960 10 40 10 10 730 490 760 270 10 760 270 10 10 User Adj: 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 0.85 1.00 1.00 1.00 PHF Adi: PHF Volume: 110 40 816 10 40 9 10 730 417 760 270 10 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 110 40 816 10 40 9 10 730 417 760 270 10 FinalVolume: 110 40 816 10 40 9 10 730 417 760 270 10 OvlAdjVol: 436 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.03 0.02 0.48 0.01 0.01 0.01 0.00 0.21 0.25 0.22 0.08 0.08 OvlAdjV/S: 0.26 \*\*\*\* Crit Moves: \*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #8 PORTOLA/SANTA MARGARITA PKWY (NS) & EL TORO RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.905
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 90 Level Of Service: E Cycle (sec): \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 
 Control:
 Protected
 <th 2 0 4 0 1 2 0 3 0 1 1 0 3 0 1 1 0 3 0 1 Lanes: -----| Volume Module: Base Vol: 580 1950 20 70 640 430 450 180 280 60 830 410 Initial Bse: 580 1950 20 70 640 430 450 180 280 60 830 410 0 410 PHF Volume: 580 1950 17 70 640 366 450 180 0 60 830 349 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 0 Reduced Vol: 580 1950 17 70 640 366 450 180 0 60 830 349 FinalVolume: 580 1950 17 70 640 366 450 180 0 60 830 349 Saturation Flow Module: -----| Capacity Analysis Module: Vol/Sat: 0.17 0.29 0.01 0.02 0.13 0.22 0.26 0.04 0.00 0.04 0.16 0.21 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* \_\_\_\_\_\_\_\_

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #8 PORTOLA/SANTA MARGARITA PKWY (NS) & EL TORO RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 1.259
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 180 Level Of Service: F \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R 
 Control:
 Protected
 <th \_\_\_\_\_| Volume Module: Base Vol: 410 1150 50 590 1700 850 490 670 490 340 600 1.00 Initial Bse: 410 1150 50 590 1700 850 490 670 490 340 600 750 0 0 Initial Fut: 410 1150 50 590 1700 850 490 670 490 340 600 750 PHF Volume: 410 1150 43 590 1700 723 490 670 0 340 600 638 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.12 0.17 0.03 0.17 0.33 0.43 0.29 0.13 0.00 0.20 0.12 0.38 Crit Moves: \*\*\*\* \*\*\*\* \*\*\*\*

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

## Appendix I

Buildout (Year 2035) With Project Conditions Intersection Analysis Worksheets

Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #1 PORTOLA PKWY (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.674
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 35 Level Of Service: B \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R 
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected
 Include
 Volume Module: Base Vol: 130 1730 310 450 530 20 60 20 30 450 50 940 Initial Bse: 130 1730 310 450 530 20 60 20 30 450 50 940 37 Saturation Flow Module: Lanes: 2.00 3.00 1.00 2.00 3.00 1.00 1.00 1.00 1.00 2.00 2.00 1.00 Final Sat.: 3400 5100 1700 3400 5100 1700 1700 1700 1700 3400 3400 1700 -----|----|-----||------| Capacity Analysis Module: Vol/Sat: 0.04 0.34 0.16 0.13 0.10 0.01 0.04 0.01 0.02 0.13 0.01 0.00 OvlAdjV/S: 0.02 Crit Moves: \*\*\*\*

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) Intersection #1 PORTOLA PKWY (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.727
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 40 Level Of Service: C \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L-T-R L-T-R L-T-R \_\_\_\_\_|\_\_\_|\_\_\_| Volume Module: Base Vol: 60 860 350 1140 1860 70 70 30 90 400 20 770 Initial Bse: 60 860 350 1140 1860 70 70 30 90 400 20 770 Added Vol: 0 0 10 2 0 0 0 0 0 6 0 PasserByVol: 0 0 0 0 0 0 0 0 0 0 1 Initial Fut: 60 860 360 1142 1860 70 70 30 90 406 20 771 103 OvlAdjVol: \_\_\_\_\_| Saturation Flow Module: Lanes: 2.00 3.00 1.00 2.00 3.00 1.00 1.00 1.00 1.00 2.00 2.00 1.00 Final Sat.: 3400 5100 1700 3400 5100 1700 1700 1700 1700 3400 3400 1700 \_\_\_\_\_| Capacity Analysis Module: Vol/Sat: 0.02 0.17 0.18 0.34 0.36 0.04 0.04 0.02 0.05 0.12 0.01 0.00 OvlAdjV/S: 0.06 Crit Moves: \*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #2 PORTOLA PKWY (NS) @ SR-S41 RAMPS (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.516
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 24 Level Of Service: A \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 
 Control:
 Protected
 <th \_\_\_\_\_| Volume Module: Base Vol: 560 910 90 250 560 260 230 0 290 360 0 1840 Initial Bse: 560 910 90 250 560 260 230 0 290 360 0 1840 Saturation Flow Module: Lanes: 2.00 3.00 1.00 2.00 2.00 1.00 1.00 0.00 1.00 2.00 0.00 1.00 Final Sat.: 3400 5100 1700 3400 3400 1700 1700 0 1700 3400 0 1700 \_\_\_\_\_| Capacity Analysis Module: Vol/Sat: 0.16 0.18 0.00 0.07 0.16 0.00 0.14 0.00 0.00 0.11 0.00 0.00 Crit Moves: \*\*\*\* \*\*\*\* \*\*\*\*

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

\_\_\_\_\_\_

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #2 PORTOLA PKWY (NS) @ SR-S41 RAMPS (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.693
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 36 Level Of Service: B Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R -----| 
 Control:
 Protected
 Protected
 Protected
 Protected
 Protected
 Protected

 Rights:
 Ignore
 Ignore
 Ignore
 Ignore
 Ignore

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 Volume Module: Base Vol: 300 880 210 1200 1080 130 190 0 450 170 0 420 Initial Bse: 300 880 210 1200 1080 130 190 0 450 170 0 420 FinalVolume: 300 880 0 1200 1080 0 200 0 0 172 0 0 Saturation Flow Module: Lanes: 2.00 3.00 1.00 2.00 2.00 1.00 1.00 0.00 1.00 2.00 0.00 1.00 Final Sat.: 3400 5100 1700 3400 3400 1700 1700 0 1700 3400 0 1700 \_\_\_\_\_| Capacity Analysis Module: Vol/Sat: 0.09 0.17 0.00 0.35 0.32 0.00 0.12 0.00 0.00 0.05 0.00 0.00 Crit Moves: \*\*\*\* \*\*\*\* \*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #3 SANTIAGO CANYON RD (NS) @ MODJESKA GRADE RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 0.8 Worst Case Level Of Service: C[ 18.9] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----|----|----||------| Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Include Rights: Include Include Include Include Lanes: 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 -----|----||-----||-----| Volume Module: Base Vol: 0 322 10 0 292 0 0 0 Ω 28 Initial Bse: 0 477 15 0 432 0 0 0 41 0 0 -----|----|-----||------| Critical Gap Module: Capacity Module: -----| Level Of Service Module: C \* \* LOS by Move: \* \* \* \* \* \* \* \* \* LT - LTR - RT LT - LTR - RT Movement: LT - LTR - RT LT - LTR - RT ApproachDel: xxxxxx ApproachLOS: \* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Note: Queue reported is the number of cars per lane.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #3 SANTIAGO CANYON RD (NS) @ MODJESKA GRADE RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 0.5 Worst Case Level Of Service: C[ 20.3] Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| Control: Uncontrolled Uncontrolled Stop Sign Stop Sign Rights: Include Include Include Lanes: 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1! 0 0 -----| Volume Module: Base Vol: 0 376 38 2 326 0 0 0 0 16 0 Initial Bse: 0 556 56 3 482 0 0 0 0 24 0 3 Added Vol: 0 9 0 0 15 0 0 0 0 0 0 PHF Volume: 0 565 56 3 497 0 0 0 0 24 0 3 Reduct Vol: 0 0 565 56 3 497 0 0 0 0 24 0 3 FinalVolume: 0 565 56 3 497 0 0 0 0 24 0 3 Critical Gap Module: 6.2 \_\_\_\_\_| Capacity Module: Level Of Service Module: SharedQueue:xxxxx xxxx xxxxx 0.0 xxxx xxxxx xxxxx xxxxx xxxxx 0.3 xxxxx ApproachDel: xxxxxx
ApproachLOS: \* Note: Queue reported is the number of cars per lane. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\* Intersection #4 SANTIAGO CANYON RD (NS) @ PROJECT ACCESS (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 0.7 Worst Case Level Of Service: C[ 16.8] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include
 Include

 Lanes:
 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1
 0 0 0 1 0 1
 Volume Module: Base Vol: 0 332 0 0 320 0 0 0 0 0 Initial Bse: 0 491 0 0 474 0 0 0 0 0 0 Added Vol: 0 0 11 5 0 0 0 0 29 0 13 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 1 1 5 474 0 0 0 0 29 0 13 PHF Volume: 0 491 11 5 474 0 0 0 0 29 0 13 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 491 11 5 474 0 0 0 0 29 0 13 Critical Gap Module: Capacity Module: Potent Cap.: xxxx xxxx xxxxx 1072 xxxx xxxxx xxxx xxxx xxxx 281 xxxx 581 Move Cap.: xxxx xxxx xxxxx 1072 xxxx xxxxx xxxx xxxx xxxx 280 xxxx 581 Level Of Service Module: Control Del:xxxxx xxxx xxxxx 8.4 xxxx xxxxx xxxxx xxxxx 19.3 xxxx 11.3 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Note: Queue reported is the number of cars per lane.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #4 SANTIAGO CANYON RD (NS) @ PROJECT ACCESS (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 0.6 Worst Case Level Of Service: C[ 19.8] Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 
 Control:
 Uncontrolled
 Uncontrolled
 Stop Sign
 Stop Sign

 Rights:
 Include
 Include
 Include
 Include

 Lanes:
 0 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1
 0 0 0 1 0 1
 Volume Module: Base Vol: 0 414 0 0 342 0 0 0 0 Initial Bse: 0 613 0 0 506 0 0 0 0 0 0 PHF Volume: 0 613 34 15 506 0 0 0 0 20 0 9
Reduct Vol: 0 0 613 34 15 506 0 0 0 0 0 0 0
FinalVolume: 0 613 34 15 506 0 0 0 0 0 20 0 9 Critical Gap Module: \_\_\_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| \_\_\_| Capacity Module: Cnflict Vol: xxxx xxxxx xxxxx 647 xxxx xxxxx xxxxx xxxxx 1149 xxxx 613 Level Of Service Module: Control Del:xxxxx xxxxx 8.9 xxxx xxxxx xxxxx xxxxx xxxxx 23.1 xxxx 12.4 ApproachLOS: \* \* C Note: Queue reported is the number of cars per lane.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 5.4 Worst Case Level Of Service: E[ 44.9] \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 0 460 80 50 780 0 0 0 100 0 80 Initial Bse: 0 460 80 50 780 0 0 0 100 0 80 Added Vol: 0 10 0 2 27 0 0 0 0 0 1 Added Vol: 0 10 0 2 27 0 0 0 0 0 0 1 PasserByVol: 0 0 0 0 0 0 0 0 0 0 0 0 1 Initial Fut: 0 470 80 52 807 0 0 0 0 100 0 81 \_\_\_\_\_| Critical Gap Module: Critical Gp:xxxxx xxxx xxxxx 4.1 xxxx xxxxx xxxxx xxxxx 6.4 xxxx 6.2 FollowUpTim:xxxxx xxxx xxxxx 2.2 xxxx xxxxx xxxxx xxxx xxxx 3.5 xxxx \_\_\_\_\_|\_\_|\_\_| Capacity Module: Level Of Service Module: Control Del:xxxxx xxxxx xxxxx 8.7 xxxx xxxxx xxxxx xxxxx 71.2 xxxx 12.4 \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Note: Queue reported is the number of cars per lane.

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx Optimal Cycle: 28 Level Of Service: A \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----| \_\_\_\_\_| Volume Module: Base Vol: 0 460 80 50 780 0 0 0 0 100 0 FinalVolume: 0 470 80 52 807 0 0 0 100 0 69 -----| Saturation Flow Module: Lanes: 0.00 0.85 0.15 1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 Final Sat.: 0 1453 247 1700 1700 0 0 0 1700 0 1700 Capacity Analysis Module: Vol/Sat: 0.00 0.32 0.32 0.03 0.47 0.00 0.00 0.00 0.00 0.06 0.00 0.04 Crit Moves: \*\*\*\* \*\*\*\* \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report 2000 HCM Unsignalized Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Average Delay (sec/veh): 6.3 Worst Case Level Of Service: F[ 57.4] \*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R -----||-----||-----| Volume Module: Base Vol: 0 760 180 120 410 0 0 0 80 0 80 PHF Volume: 0 792 180 121 429 0 0 0 0 80 0 82 Reduct Vol: 0 0 0 0 0 0 0 0 0 0 0 0 FinalVolume: 0 792 180 121 429 0 0 0 0 80 0 82 Critical Gap Module: -----| Capacity Module: Volume/Cap: xxxx xxxx xxxx 0.17 xxxx xxxx xxxx xxxx xxxx 0.73 xxxx 0.24 Level Of Service Module: \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Note: Oueue reported is the number of cars per lane. \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #5 SANTIAGO CANYON RD (NS) @ LIVE OAK CANYON RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.740
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 42 Level Of Service: C \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R ------| FinalVolume: 0 792 180 121 429 0 0 0 80 0 70 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.00 0.57 0.57 0.07 0.25 0.00 0.00 0.00 0.00 0.05 0.00 0.04 Crit Moves: \*\*\*\* \*\*\*\*

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.804
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 53 Level Of Service: D \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 230 450 0 0 1150 500 180 0 250 0 0 Initial Bse: 230 450 0 0 1150 500 180 0 250 0 0 Saturation Flow Module: Lanes: 1.00 1.00 0.00 0.00 1.39 0.61 1.00 0.00 1.00 0.00 0.00 0.00 Final Sat.: 1700 1700 0 0 2365 1035 1700 0 1700 0 0 Capacity Analysis Module: Vol/Sat: 0.14 0.27 0.00 0.00 0.49 0.49 0.11 0.00 0.13 0.00 0.00 0.00

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1 (Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.804
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 53 Level Of Service: D Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_\_|\_\_|\_\_\_| Volume Module: Base Vol: 230 450 0 0 1150 500 180 0 250 0 0 FinalVolume: 230 456 0 0 1167 511 184 0 213 0 0 -----|-----|------| Saturation Flow Module: \_\_\_\_\_|\_\_|\_\_\_|\_\_\_| Capacity Analysis Module: Vol/Sat: 0.14 0.27 0.00 0.00 0.49 0.49 0.05 0.00 0.13 0.00 0.00 0.00 Crit Moves: \*\*\*\* \*\*\*\* \*\*\*\*

\_\_\_\_\_ Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 1.039
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 180 Level Of Service: F \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_| | | Volume Module: Volume Module:
Base Vol: 180 1100 0 0 550 270 550 0 180 0 0 Initial Bse: 180 1100 0 0 550 270 550 0 180 0 0 Added Vol: 0 20 0 0 12 7 12 0 0 0 0 0 0 PasserByVol: 0 0 0 0 562 277 562 0 180 0 0 0 Saturation Flow Module: Lanes: 1.00 1.00 0.00 0.00 1.34 0.66 1.00 0.00 1.00 0.00 0.00 0.00 Final Sat.: 1700 1700 0 0 2277 1123 1700 0 1700 0 0 \_\_\_\_\_|\_\_|\_\_| Capacity Analysis Module: Vol/Sat: 0.11 0.66 0.00 0.00 0.25 0.25 0.33 0.00 0.09 0.00 0.00 0.00 Crit Moves: \*\*\*\*

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #6 EL TORO RD (NS) @ GLENN RANCH RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.874
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 180 Level Of Service: D Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R Volume Module: Base Vol: 180 1100 0 0 550 270 550 0 180 0 0 FinalVolume: 180 1120 0 0 562 277 562 0 153 0 0 Saturation Flow Module: Lanes: 1.00 1.00 0.00 0.00 1.34 0.66 2.00 0.00 1.00 0.00 0.00 0.00 Final Sat.: 1700 1700 0 0 2277 1123 3400 0 1700 0 0 Capacity Analysis Module: Vol/Sat: 0.11 0.66 0.00 0.00 0.25 0.25 0.17 0.00 0.09 0.00 0.00 0.00 Crit Moves: \*\*\*\* \*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\* Intersection #7 MARGUERITE PKWY (NS) @ EL TORO RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.574
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 27 Level Of Service: A \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R \_\_\_\_\_| Volume Module: Base Vol: 510 10 580 10 10 0 10 260 170 980 860 10 Initial Bse: 510 10 580 10 10 0 10 260 170 980 860 10 FinalVolume: 510 10 495 10 10 0 10 264 145 986 871 10 2 Saturation Flow Module: Lanes: 2.00 1.00 1.00 1.00 2.00 1.00 2.00 1.00 2.00 1.00 2.00 1.98 0.02 Final Sat.: 3400 1700 1700 1700 3400 1700 3400 3400 1700 3400 3361 39 \_\_\_\_\_|\_\_|\_\_\_| Capacity Analysis Module: Vol/Sat: 0.15 0.01 0.29 0.01 0.00 0.00 0.00 0.08 0.09 0.29 0.26 0.26 OvlAdjV/S: 0.00 Crit Moves: \*\*\*\*

\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*

Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Intersection #7 MARGUERITE PKWY (NS) @ EL TORO RD (EW) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Cycle (sec): 100 Critical Vol./Cap.(X): 0.790
Loss Time (sec): 5 Average Delay (sec/veh): xxxxxx
Optimal Cycle: 50 Level Of Service: C \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* Approach: North Bound South Bound East Bound West Bound Movement: L - T - R L - T - R L - T - R 
 Control:
 Split Phase
 Split Phase
 Protected
 Protected

 Rights:
 Ovl
 Include
 Include
 Include

 Min. Green:
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0 Volume Module: Base Vol: 110 40 960 10 40 10 10 730 490 760 270 10 FinalVolume: 110 40 822 10 40 9 10 742 417 764 277 10 440 Saturation Flow Module: Capacity Analysis Module: Vol/Sat: 0.03 0.02 0.48 0.01 0.01 0.01 0.00 0.22 0.25 0.22 0.08 0.08 0.26 \*\*\* OvlAdjV/S: Crit Moves:

GP + P (AM) Tue Jul 5, 2011 16:13:25 Page 9-1

|                                                                                                          |                         |      |       |                   |      |       |      |          |       |            | <del>-</del> - |      |  |
|----------------------------------------------------------------------------------------------------------|-------------------------|------|-------|-------------------|------|-------|------|----------|-------|------------|----------------|------|--|
| Level Of Service Computation Report                                                                      |                         |      |       |                   |      |       |      |          |       |            |                |      |  |
| ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative)                                         |                         |      |       |                   |      |       |      |          |       |            |                |      |  |
| **********************                                                                                   |                         |      |       |                   |      |       |      |          |       |            |                |      |  |
| Intersection #8 PORTOLA/SANTA MARGARITA PKWY (NS) & EL TORO RD (EW) ************************************ |                         |      |       |                   |      |       |      |          |       |            |                |      |  |
| Cycle (sec):                                                                                             | Critical Vol./Cap.(X):  |      |       |                   |      |       |      | 0.906    |       |            |                |      |  |
| Loss Time (se                                                                                            | Average Delay (sec/veh) |      |       |                   |      |       |      | : XXXXXX |       |            |                |      |  |
| Optimal Cycle: 90                                                                                        |                         |      |       | Level Of Service: |      |       |      |          |       |            | E              |      |  |
| **********************                                                                                   |                         |      |       |                   |      |       |      |          |       | ****       | *****          |      |  |
| Approach:                                                                                                | North Bound             |      |       | South Bound       |      |       |      | ast Bo   |       | West Bound |                |      |  |
| Movement:                                                                                                |                         |      | - R   |                   |      |       |      |          | - R   |            | - T            |      |  |
|                                                                                                          | •                       |      |       | •                 |      | ,     | •    |          |       |            |                |      |  |
| Control:                                                                                                 | Protected               |      |       | Protected         |      |       | Pi   | cotect   | ted   | Protected  |                |      |  |
| Rights:                                                                                                  | Include                 |      |       | Include           |      |       |      | -        | ce    |            |                |      |  |
| Min. Green:                                                                                              | _                       | 0    | 0     | •                 | 0    | 0     |      | 0        | 0     | 0          | 0              | 0    |  |
| Y+R:                                                                                                     |                         | 4.0  |       | 4.0               |      | 4.0   |      | 4.0      | 4.0   |            | 4.0            | 4.0  |  |
| Lanes:                                                                                                   |                         |      | 0 1   |                   |      | 0 1   |      |          | 0 1   |            | ) 3            | 0 1  |  |
|                                                                                                          |                         |      |       |                   |      |       |      |          |       |            |                |      |  |
| Volume Module                                                                                            |                         |      | •     |                   |      |       |      |          |       |            |                |      |  |
| •                                                                                                        | 580                     |      | 20    | 70                | 640  | 430   | 450  | 180      | 280   | 60         | 830            | 410  |  |
| Growth Adj:                                                                                              | 1.00                    |      | 1.00  | 1.00              |      | 1.00  |      | 1.00     | 1.00  |            | 1.00           | 1.00 |  |
| Initial Bse:                                                                                             |                         | 1950 | 20    | 70                | 640  | 430   | 450  | 180      | 280   | 60         | 830            | 410  |  |
| Added Vol:                                                                                               | 0                       | 0    | 1     | 1                 | 0    | 0     | 0    | 2        | 0     | 2          | 6              | 2    |  |
| PasserByVol:                                                                                             | 0                       | 0    | 0     | 0                 | 0    | 0     | 0    | 0        | 0     | 0          | 0              | 0    |  |
| Initial Fut:                                                                                             |                         | 1950 | 21    | 71                | 640  | 430   | 450  | 182      | 280   | 62         | 836            | 412  |  |
| User Adj:                                                                                                | 1.00                    |      | 0.85  | 1.00              |      | 0.85  |      | 1.00     | 0.00  |            | 1.00           | 0.85 |  |
| PHF Adj:                                                                                                 | 1.00                    |      | 1.00  | 1.00              |      | 1.00  |      | 1.00     | 0.00  |            | 1.00           | 1.00 |  |
| PHF Volume:                                                                                              |                         | 1950 | 18    | 71                | 640  | 366   | 450  | 182      | 0     | 62         | 836            | 350  |  |
| Reduct Vol:                                                                                              | 0                       | 0    | 0     | 0                 | 0    | 0     | 0    | 0        | 0     | 0          | 0              | 0    |  |
| Reduced Vol:                                                                                             |                         | 1950 | 18    | 71                | 640  | 366   | 450  | 182      | 0     | 62         | 836            | 350  |  |
| PCE Adj:                                                                                                 | 1.00                    |      | 1.00  | 1.00              |      | 1.00  |      | 1.00     | 0.00  |            | 1.00           | 1.00 |  |
| MLF Adj:                                                                                                 | 1.00                    |      | 1.00  | 1.00              |      | 1.00  |      | 1.00     | 0.00  | 1.00       |                | 1.00 |  |
| FinalVolume:                                                                                             |                         | 1950 | 18    | 71                |      | 366   |      | 182      | 0     | 62         | 836            | 350  |  |
|                                                                                                          |                         |      |       |                   |      |       |      |          |       |            |                |      |  |
| Sat/Lane:                                                                                                | 1700                    |      | 1700  | 1700              | 1700 | 1700  | 1700 | 1700     | 1700  | 1700       | 1700           | 1700 |  |
| Adjustment:                                                                                              | 1.00                    | 1.00 | 1.00  | 1.00              | 1.00 | 1.00  | 1.00 | 1.00     | 1.00  |            | 1.00           | 1.00 |  |
| Lanes:                                                                                                   | 2.00                    |      | 1.00  | 2.00              |      | 1.00  |      | 3.00     | 1.00  |            | 3.00           | 1.00 |  |
| Final Sat.:                                                                                              |                         | 6800 | 1700  | 3400              |      | 1700  |      | 5100     | 1700  |            | 5100           | 1700 |  |
|                                                                                                          |                         |      |       |                   |      |       |      |          |       |            |                |      |  |
| Capacity Analysis Module:                                                                                |                         |      |       |                   |      |       |      |          |       |            |                |      |  |
| Vol/Sat:                                                                                                 | 0.17                    | 0.29 | 0.01  | 0.02              | 0.13 | 0.22  | 0.26 | 0.04     | 0.00  | 0.04       | 0.16           | 0.21 |  |
| Crit Moves:                                                                                              | ****                    |      |       |                   |      | ****  | **** |          |       |            |                | **** |  |
| ******                                                                                                   | *****                   | **** | ***** | ****              | **** | ***** | **** | ****     | ***** | ****       | ****           | **** |  |

Tue Jul 5, 2011 16:14:21 Page 9-1

|                                                                                                      |                                    | ]                     | Level O                          | f Serv                                                            | vice (      | Computa                   | tion I                    | Report       | -                             |                   |      |                           |  |  |
|------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|----------------------------------|-------------------------------------------------------------------|-------------|---------------------------|---------------------------|--------------|-------------------------------|-------------------|------|---------------------------|--|--|
| Level Of Service Computation Report ICU 1(Loss as Cycle Length %) Method (Future Volume Alternative) |                                    |                       |                                  |                                                                   |             |                           |                           |              |                               |                   |      |                           |  |  |
| ******************                                                                                   |                                    |                       |                                  |                                                                   |             |                           |                           |              |                               |                   |      |                           |  |  |
| Intersection #8 PORTOLA/SANTA MARGARITA PKWY (NS) & EL TORO RD (EW)                                  |                                    |                       |                                  |                                                                   |             |                           |                           |              |                               |                   |      |                           |  |  |
| Cycle (sec):                                                                                         | Critical Vol./Cap.(X):             |                       |                                  |                                                                   |             |                           |                           | 1.259        |                               |                   |      |                           |  |  |
| Loss Time (se                                                                                        | Average Delay (sec/veh):           |                       |                                  |                                                                   |             |                           |                           |              |                               |                   |      |                           |  |  |
| Optimal Cycle: 180                                                                                   |                                    |                       |                                  | Critical Vol./Cap.(X): Average Delay (sec/veh): Level Of Service: |             |                           |                           |              |                               |                   | F'   |                           |  |  |
| *****                                                                                                | ****                               | ****                  | *****                            | ****                                                              | *********** |                           |                           |              |                               |                   |      | ******                    |  |  |
| Approach:                                                                                            | North Bound                        |                       |                                  | Sou                                                               | uth Bo      | ound                      | Ea                        | ast Bo       | ound                          | West Bound        |      |                           |  |  |
| Movement:                                                                                            | L -                                | - T                   | - R                              | ь -                                                               | - Т         | - R                       | L -                       | - Т          | - R                           | L -               | - T  | - R                       |  |  |
|                                                                                                      |                                    |                       |                                  |                                                                   |             | j                         | 1                         |              |                               |                   |      |                           |  |  |
| Control:                                                                                             | Protected                          |                       |                                  | Pi                                                                | rotect      | ted                       | Pi                        | rotect       | ed                            | Protected         |      |                           |  |  |
| Rights:                                                                                              | Include                            |                       |                                  | Include                                                           |             |                           |                           |              |                               | Include           |      |                           |  |  |
| Min. Green:                                                                                          | 0                                  | 0                     | 0                                | 0                                                                 | 0           | 0                         | 0                         | 0            | 0                             | 0                 | 0    | 0                         |  |  |
| Y+R:                                                                                                 | 4.0                                | 4.0                   |                                  |                                                                   | 4.0         | 4.0                       | 4.0                       | 4.0          | 4.0                           | 4.0               | 4.0  | 4.0                       |  |  |
| Lanes:                                                                                               | 2 (                                | ) 4                   | 0 1                              | 2 (                                                               | 0 3         | 0 1                       | 1 (                       | 3            | 0 1                           | 1 (               | ) 3  | 0 1                       |  |  |
|                                                                                                      |                                    |                       |                                  |                                                                   |             |                           |                           |              |                               |                   |      |                           |  |  |
| Volume Module                                                                                        | €:                                 |                       |                                  |                                                                   |             |                           |                           |              |                               |                   |      |                           |  |  |
| Base Vol:                                                                                            | 410                                | 1150                  | 50                               | 590                                                               | 1700        | 850                       | 490                       | 670          | 490                           | 340               | 600  | 750                       |  |  |
| Growth Adj:                                                                                          | 1.00                               | 1.00                  | 1.00                             | 1.00                                                              | 1.00        | 1.00                      | 1.00                      | 1.00         | 1.00                          | 1.00              | 1.00 | 1.00                      |  |  |
| Initial Bse:                                                                                         | 410                                | 1150                  | 50                               |                                                                   | 1700        | 850                       | 490                       | 670          | 490                           | 340               | 600  | 750                       |  |  |
| Added Vol:                                                                                           | 0                                  | 0                     | 2                                | 2                                                                 | 0           | 0                         | 0                         | 7            | 0                             | 1                 | 4    | 1                         |  |  |
| PasserByVol:                                                                                         | 0                                  | 0                     | 0                                | 0                                                                 | 0           | 0                         | 0                         | 0            | 0                             | 0                 | 0    | 0                         |  |  |
| Initial Fut:                                                                                         | 410                                | 1150                  | 52                               | 592                                                               | 1700        | 850                       | 490                       | 677          | 490                           | 341               | 604  | 751                       |  |  |
| User Adj:                                                                                            | 1.00                               | 1.00                  | 0.85                             | 1.00                                                              | 1.00        | 0.85                      | 1.00                      | 1.00         | 0.00                          | 1.00              | 1.00 | 0.85                      |  |  |
| PHF Adj:                                                                                             | 1.00                               | 1.00                  | 1.00                             | 1.00                                                              | 1.00        | 1.00                      | 1.00                      | 1.00         | 0.00                          | 1.00              | 1.00 | 1.00                      |  |  |
|                                                                                                      | 410                                | 1150                  | 44                               | 592                                                               | 1700        | 723                       | 490                       | 677          | 0                             | 341               | 604  | 638                       |  |  |
| Reduct Vol:                                                                                          | 0                                  | 0                     | 0                                | 0                                                                 | _           | 0                         | 0                         | 0            | 0                             | 0                 | 0    | 0                         |  |  |
| Reduced Vol:                                                                                         |                                    |                       | 44                               |                                                                   | 1700        | 723                       | 490                       | 677          | 0                             | 341               | 604  | 638                       |  |  |
| PCE Adj:                                                                                             | 1.00                               |                       | 1.00                             |                                                                   | 1.00        | 1.00                      |                           | 1.00         |                               | 1.00              | 1.00 | 1.00                      |  |  |
| MLF Adj:                                                                                             | 1.00                               |                       | 1.00                             |                                                                   | 1.00        | 1.00                      |                           | 1.00         |                               | 1.00              |      | 1.00                      |  |  |
| FinalVolume:                                                                                         |                                    |                       | 44                               |                                                                   | 1700        | 723                       |                           | 677          | 0                             | 341               | 604  | 638                       |  |  |
|                                                                                                      |                                    |                       |                                  |                                                                   |             |                           |                           |              |                               |                   |      |                           |  |  |
| Saturation Fl                                                                                        |                                    |                       |                                  |                                                                   |             |                           |                           |              |                               |                   |      |                           |  |  |
| Sat/Lane:                                                                                            |                                    | 1700                  | 1700                             |                                                                   | 1700        | 1700                      |                           | 1700         | 1700                          | 1700              |      | 1700                      |  |  |
|                                                                                                      | 1.00                               |                       | 1.00                             |                                                                   | 1.00        |                           |                           | 1.00         | 1.00                          | 1.00              |      | 1.00                      |  |  |
| Lanes:                                                                                               | 2.00                               |                       | 1.00                             |                                                                   | 3.00        |                           |                           | 3.00         |                               | 1.00              |      | 1.00                      |  |  |
|                                                                                                      |                                    |                       |                                  |                                                                   |             |                           |                           |              |                               |                   |      |                           |  |  |
|                                                                                                      |                                    |                       |                                  |                                                                   |             |                           |                           |              |                               |                   |      |                           |  |  |
|                                                                                                      |                                    |                       |                                  | 0 1-                                                              |             |                           | 0.05                      |              |                               |                   |      | 0 00                      |  |  |
| · •                                                                                                  |                                    | 0.17                  | 0.03                             | 0.17                                                              | 0.33        |                           |                           | 0.13         | 0.00                          | 0.20              | 0.12 |                           |  |  |
|                                                                                                      |                                    | باساساساسا            | بادناد بار بار مار بار مار مار م | . باد بای بای بای بای                                             |             |                           |                           |              | la alla alla afa afa (15 - 15 | and and the       |      |                           |  |  |
| Final Sat.:                                                                                          | 3400<br> <br>Lysis<br>0.12<br>**** | 6800<br>Modul<br>0.17 | 1700<br> <br>le:<br>0.03         | 3400<br> <br>0.17                                                 | 5100<br>    | 1700<br> <br>0.43<br>**** | 1700<br> <br>0.29<br>**** | 5100<br>0.13 | 1700<br> <br>0.00             | 1700<br> <br>0.20 | 0.12 | 1700<br> <br>0.38<br>**** |  |  |

## Appendix J

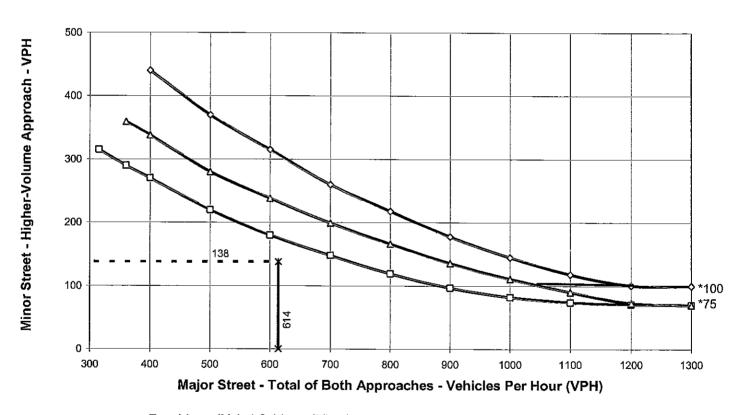
Traffic Signal Warrant Analysis

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = EXISTING (AM)

Major Street Name = SANTIAGO CYN RD

Total of Both Approaches (VPH) = 614


Number of Approach Lanes Major Street = 1

Minor Street Name = LIVE OAK CYN RD

High Volume Approach (VPH) = 138

Number of Approach Lanes Minor Street = 1

### SIGNAL WARRANT NOT SATISFIED



—□—1 Lane (Major) & 1 Lane (Minor)

2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

2+ Lanes (Major) & 2+ Lanes (Minor)

→ Major Street Approaches

- \* - Minor Street Approaches

November 2003

RURAL WARRANT,XLS Sect. 4C.06

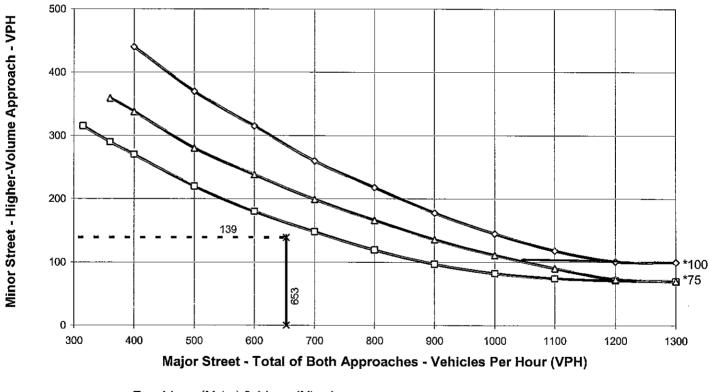
<sup>\*</sup> Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = EXISTING PLUS PROJECT (AM)

Major Street Name = SANTIAGO CYN RD

Total of Both Approaches (VPH) = 653


Number of Approach Lanes Major Street = 1

Minor Street Name = LIVE OAK CYN RD

High Volume Approach (VPH) = 139

Number of Approach Lanes Minor Street = 1

### SIGNAL WARRANT NOT SATISFIED



----- 1 Lane (Major) & 1 Lane (Minor)

2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

2+ Lanes (Major) & 2+ Lanes (Minor)

→ Major Street Approaches

- \* - Minor Street Approaches

November 2003

RURAL WARRANT.XLS Sect. 4C.06

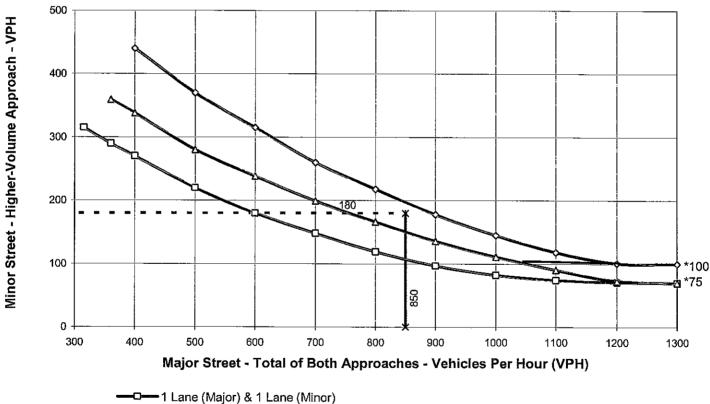
<sup>\*</sup> Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = INTERIM (YEAR 2015) WITHOUT PROJECT (AM)

Major Street Name = SANTIAGO CYN RD

Total of Both Approaches (VPH) = 850


Number of Approach Lanes Major Street = 1

Minor Street Name = LIVE OAK CYN RD

High Volume Approach (VPH) = 180

Number of Approach Lanes Minor Street = 1

### WARRANTED FOR A SIGNAL



-2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

----2+ Lanes (Major) & 2+ Lanes (Minor)

→ Major Street Approaches

- Minor Street Approaches

November 2003

**RURAL WARRANT.XLS** Sect. 4C.06

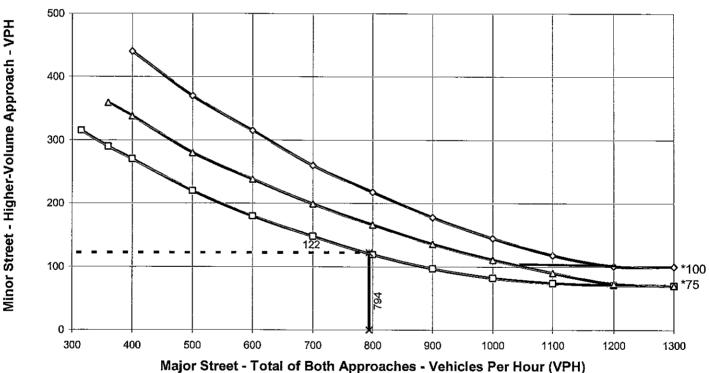
<sup>\*</sup> Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = EXISTING (PM)

Major Street Name = SANTIAGO CYN RD

Total of Both Approaches (VPH) = 794


Number of Approach Lanes Major Street = 1

Minor Street Name = LIVE OAK CYN RD

High Volume Approach (VPH) = 122

Number of Approach Lanes Minor Street = 1

### WARRANTED FOR A SIGNAL



major officer Total of Both Approaches - Vehicles Let Hour

1 Lane (Major) & 1 Lane (Minor)

2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

2+ Lanes (Major) & 2+ Lanes (Minor)

─── Major Street Approaches

- \* - Minor Street Approaches

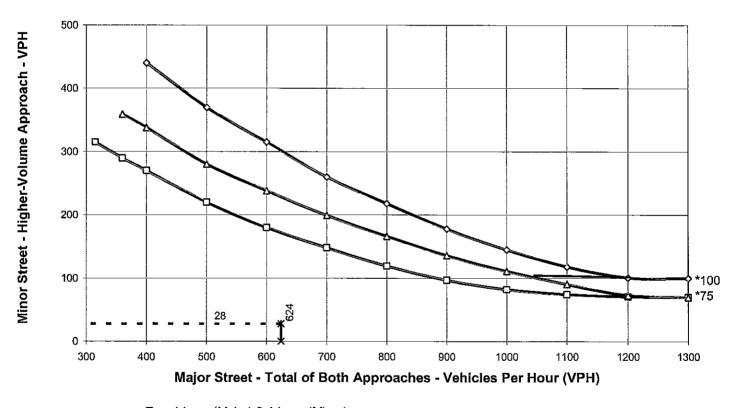
November 2003

RURAL WARRANT.XLS Sect. 4C.06

<sup>\*</sup> Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = EXISTING (AM)


Major Street Name = **SANTIAGO CANYON RD**Total of Both Approaches (VPH) = 624

Number of Approach Lanes Major Street = 1

Minor Street Name = MODJESKA GRADE RD High Volume Approach (VPH) = 28

Number of Approach Lanes Minor Street = 1

### SIGNAL WARRANT NOT SATISFIED



—□—1 Lane (Major) & 1 Lane (Minor)

2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

2+ Lanes (Major) & 2+ Lanes (Minor)

Major Street Approaches

- **★** - Minor Street Approaches

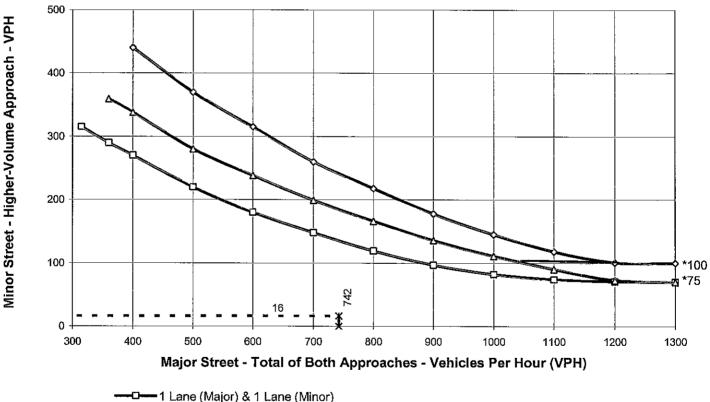
November 2003

RURAL WARRANT.XLS Sect. 4C.06

<sup>\*</sup> Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = EXISTING (PM)


Major Street Name = SANTIAGO CANYON RD Total of Both Approaches (VPH) = 742

> 1 Number of Approach Lanes Major Street =

Minor Street Name = MODJESKA GRADE RD High Volume Approach (VPH) = 16

Number of Approach Lanes Minor Street = 1

### SIGNAL WARRANT NOT SATISFIED



-2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

→ 2+ Lanes (Major) & 2+ Lanes (Minor)

→ Major Street Approaches

\* - Minor Street Approaches

November 2003

Sect. 4C.06 **RURAL WARRANT.XLS** 

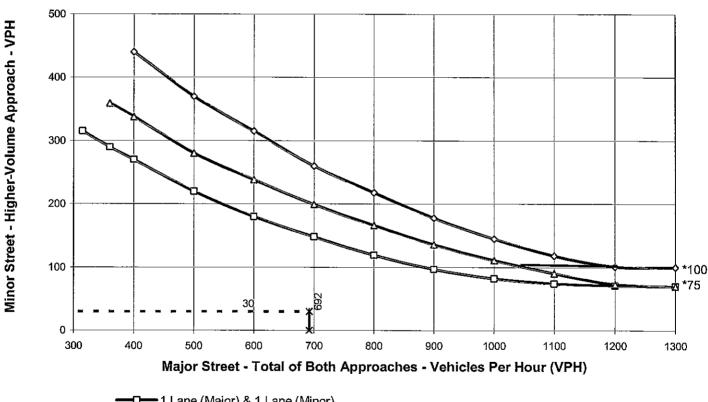
<sup>\*</sup> Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = INTERIM (YEAR 2015) WITH PROJECT (AM)

Major Street Name = SANTIAGO CANYON RD

Total of Both Approaches (VPH) = 692


1 Number of Approach Lanes Major Street =

Minor Street Name = MODJESKA GRADE RD

High Volume Approach (VPH) = 30

Number of Approach Lanes Minor Street = 1

### SIGNAL WARRANT NOT SATISFIED



The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second o

-2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

2+ Lanes (Major) & 2+ Lanes (Minor)

→ Major Street Approaches

\* - Minor Street Approaches

November 2003

**RURAL WARRANT.XLS** Sect. 4C.06

<sup>\*</sup> Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

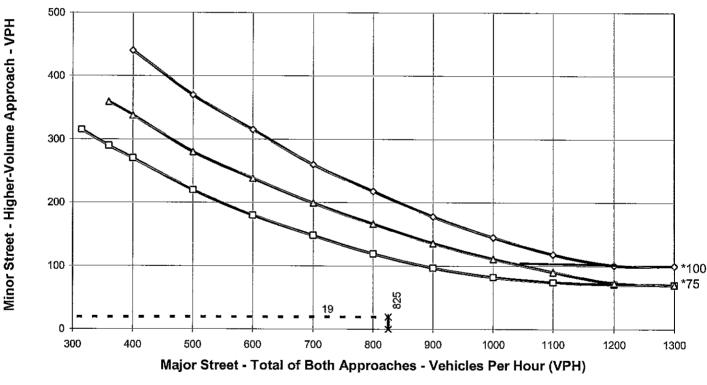
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = INTERIM (YEAR 2015) WITH PROJECT (PM)

Major Street Name = SANTIAGO CANYON RD

Total of Both Approaches (VPH) = 825

1


Number of Approach Lanes Major Street =

Minor Street Name = MODJESKA GRADE RD

High Volume Approach (VPH) = 19

Number of Approach Lanes Minor Street = 1

### SIGNAL WARRANT NOT SATISFIED



-□--1 Lane (Major) & 1 Lane (Minor)

2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

2+ Lanes (Major) & 2+ Lanes (Minor)

- **※** - Minor Street Approaches

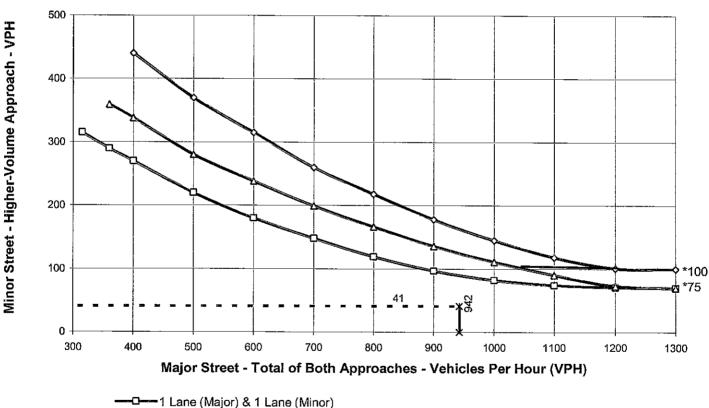
November 2003

RURAL WARRANT.XLS Sect. 4C.06

<sup>\*</sup> Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = BUILDOUT (YEAR 2035) WITH PROJECT (AM)


Major Street Name = SANTIAGO CANYON RD Total of Both Approaches (VPH) = 942

> 1 Number of Approach Lanes Major Street =

Minor Street Name = MODJESKA GRADE RD High Volume Approach (VPH) = 41

> Number of Approach Lanes Minor Street = 1

### SIGNAL WARRANT NOT SATISFIED



----2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

---2+ Lanes (Major) & 2+ Lanes (Minor)

\* Major Street Approaches

Minor Street Approaches

November 2003

RURAL WARRANT.XLS Sect. 4C.06

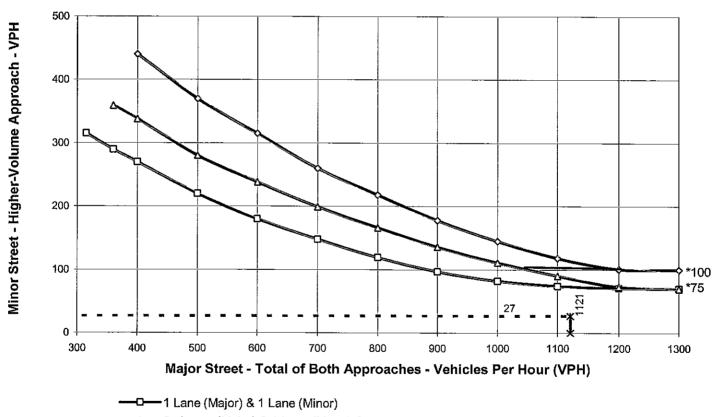
<sup>\*</sup> Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = BUILDOUT (YEAR 2035) WITH PROJECT (PM)

Major Street Name = SANTIAGO CANYON RD

Total of Both Approaches (VPH) = 1121


Number of Approach Lanes Major Street = 1

Minor Street Name = MODJESKA GRADE RD

High Volume Approach (VPH) = 27

Number of Approach Lanes Minor Street = 1

### SIGNAL WARRANT NOT SATISFIED



2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

2+ Lanes (Major) & 2+ Lanes (Minor)

──── Major Street Approaches

\* - Minor Street Approaches

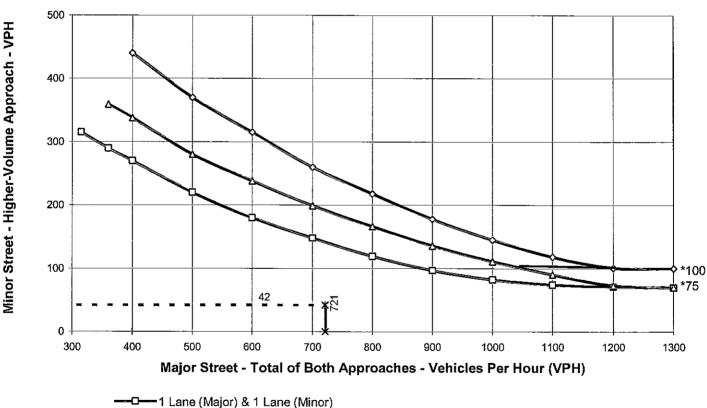
November 2003

RURAL WARRANT.XLS Sect. 4C.06

<sup>\*</sup> Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = INTERIM (YEAR 2015) WITH PROJECT (AM)


Major Street Name = SANTIAGO CANYON RD Total of Both Approaches (VPH) = 721

Number of Approach Lanes Major Street = 1

Minor Street Name = PROJECT ACCESS High Volume Approach (VPH) = 42

> Number of Approach Lanes Minor Street = 1

### SIGNAL WARRANT NOT SATISFIED



-2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

→ 2+ Lanes (Major) & 2+ Lanes (Minor)

Major Street Approaches

Minor Street Approaches

\* Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

November 2003

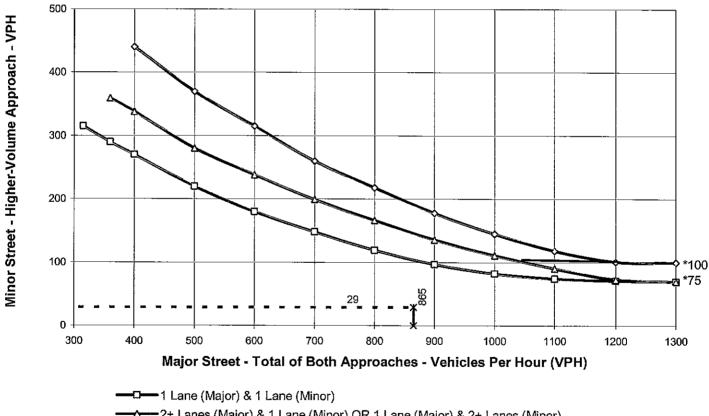
RURAL WARRANT, XLS Sect. 4C.06

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = INTERIM (YEAR 2015) WITH PROJECT (PM)

Major Street Name = SANTIAGO CANYON RD

Total of Both Approaches (VPH) = 865


Number of Approach Lanes Major Street = 1

Minor Street Name = PROJECT ACCESS

High Volume Approach (VPH) = 29

Number of Approach Lanes Minor Street = 1

### SIGNAL WARRANT NOT SATISFIED



2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

->---2+ Lanes (Major) & 2+ Lanes (Minor)

→ Major Street Approaches

★ ■ Minor Street Approaches

November 2003

**RURAL WARRANT.XLS** Sect. 4C.06

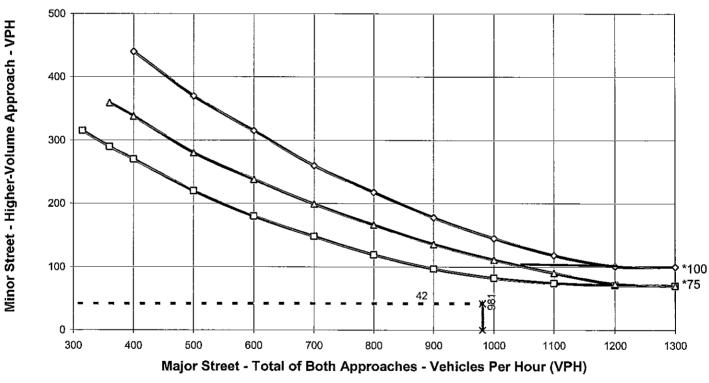
<sup>\*</sup> Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = BUILDOUT (YEAR 2035) WITH PROJECT (AM)

Major Street Name = SANTIAGO CANYON RD

Total of Both Approaches (VPH) = 981


Number of Approach Lanes Major Street = 1

Minor Street Name = PROJECT ACCESS

High Volume Approach (VPH) = 42

Number of Approach Lanes Minor Street = 1

### SIGNAL WARRANT NOT SATISFIED



—□— 1 Lane (Major) & 1 Lane (Minor)

2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)

2+ Lanes (Major) & 2+ Lanes (Minor)

Major Street Approaches

- \* - Minor Street Approaches

November 2003

RURAL WARRANT.XLS Sect. 4C.06

<sup>\*</sup> Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

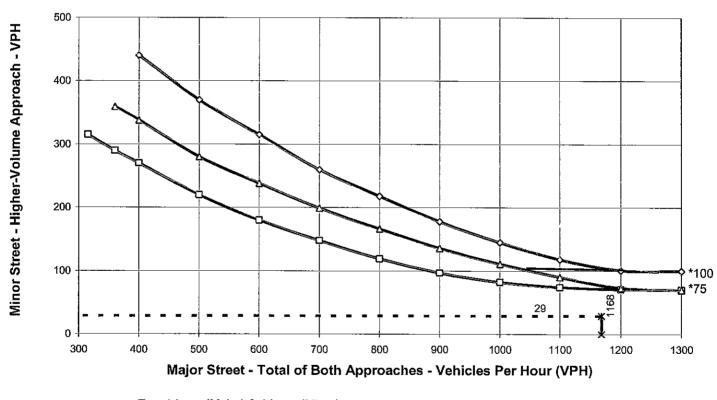
(COMMUNITY LESS THAN 10,000 POPULATION OR ABOVE 70 km/h OR ABOVE 40 mph ON MAJOR STREET)

Traffic Conditions = BUILDOUT (YEAR 2035) WITH PROJECT (PM)

Major Street Name = SANTIAGO CANYON RD

Total of Both Approaches (VPH) = 1168

Number of Approach Lanes Major Street =


Minor Street Name = PROJECT ACCESS

High Volume Approach (VPH) = 29

1

Number of Approach Lanes Minor Street = 1

### SIGNAL WARRANT NOT SATISFIED



- —□
  1 Lane (Major) & 1 Lane (Minor)
- 2+ Lanes (Major) & 1 Lane (Minor) OR 1 Lane (Major) & 2+ Lanes (Minor)
- 2+ Lanes (Major) & 2+ Lanes (Minor)
- ──── Major Street Approaches
- ж Minor Street Approaches

November 2003

RURAL WARRANT,XLS Sect. 4C.06

<sup>\*</sup> Note: 100 vph applies as the lower threshold volume for a minor-street approach with two or more lanes and 75 vph applies as the lower threshold volume for a minor-street approach with one lane.

## Appendix K

Percent Time Following LOS Analysis

Table K-1
Percent Time Following LOS Analysis for Existing Conditions

|                                             | EXISTING CO                     | INDITIONS |                                 |     |
|---------------------------------------------|---------------------------------|-----------|---------------------------------|-----|
|                                             | AM                              |           | PM                              |     |
| Location                                    | Percent Time Spent<br>Following | LOS       | Percent Time Spent<br>Following | LOS |
| Santiago Canyon Road                        |                                 |           |                                 |     |
| n/o Live Oak Canyon Road                    | 67.0%                           | D         | 68.1%                           | D   |
| • s/o Modjeska Grade Road                   | 67.6%                           | D         | 69.1%                           | D   |
| <ul> <li>n/o Modjeska Grade Road</li> </ul> | 65.0%                           | С         | 71.2%                           | D   |

#### Site Information General Information

Analyst: Robert Kahn Job Number: 2218-11-01 Date:

7/6/2011

AM Peak Hour

Highway: From/To: Santiago Canyon Road N/O Live Oak Canyon Road

Jurisdiction: **Orange County** 

8 Ft.

Analysis Year:

2011

Operational (LOS)

Time Period:

Design (vp)

Planning (LOS)

Level?

1

NO

Planning (vp)

**Input Data** 

Class

Terrain

Shoulder Width: Shoulder Width: Lane Width:

12 Ft. 12 Ft.

Two-way Volume:

625 vph

Rolling? YES

NΩ

NO

Lane Width:

8 Ft.

Directional Split: North/East;

42.9 %

Roadway Direction: Segment Length (L1): North/South

South/West: PHF: % Trucks:

57.1 % 0.924 1.1 % 0.1 %

Over Capacity?

Over Capacity?

0.57 Mi.

% RVs % No-Passing:

· 基层 在1000基础 1000 1000 1000

4

100 %

Access Pts per Mi.: 5.3 Pts./Mi.

#### Average Travel Speed

| Grade Adjustment Factor fg (Exhibit 20-7): | 0.93    |
|--------------------------------------------|---------|
| PCEs for Trucks ET (Exhibit 20-9):         | 1.9     |
| PCEs for RVs ER (Exhibit 20-9)             | 1.1     |
| Heavy Vehicle Adjustment Factor fHV:       | 0.990   |
| Two-way Flow Rate Vp:                      | 735 vph |
| Highest Directional Flow Rate:             | 419 vph |

vph Estimated Free Flow Speed: 55 mph Adj. for Lane Width/shoulder fl.S (Exhibit 20-5): 0 mph Adj. for access points fA (Exhibit 20-6): 1.3 mph (FFS = BFFS -fLS - fA): Free-Flow Speed FFS: 53.75 mph Adj. for No Passing fNP (Exhibit 20-11): 3.9 mph Average Travel Speed ATS = FFS - .00776vp - fNP: 44.1 mph

### **Percent Time-Spent Following**

| Grade Adjustment Factor fG (Exhibit 20-8): | 0.9     |                |    |
|--------------------------------------------|---------|----------------|----|
| PCE Trucks ET (Exhibit 20-10):             | 1.5     |                |    |
| PCE RVs ER (Exhibit 20-10):                | 1.0     |                |    |
| Heavy Vehicle Adjustment Factor fHV:       | 1.0     |                |    |
| Two-Way Flow Rate vp:                      | 724 vph | Over Capacity? | NO |
| Highest Directional Flow Rate:             | 413 vph | Over Capacity? | NO |
| Base Percent Time spent following (BPTSF): | 47.1 %  |                |    |
| Adj. for dir. Dist. And no passing fd/np:  | 19.9 %  |                |    |
| Percent Time-Spent Following (PTSF):       | 67.0 %  |                |    |

### Level of Sérvice and Other Performance Measures

| Level of Service (LOS) (Exhibit 20-2 or 20-4): | D           |
|------------------------------------------------|-------------|
| Volume to Capacity Ratio (v/c):                | 0.23        |
| Peak 15-minute VMT15:                          | 96 veh-Mi.  |
| Peak Hour VMT 60:                              | 356 veh-Mi. |
| Peak 15-minute Travel Time (TT15):             | 2.2 veh-hrs |

### Notes

- 1. If Vp is greater or equal to 3,200 vph terminate analysis the LOS = F
- 2. If the highest Directional Flow is greater or equal to 1,700 vph terminate analysis the LOS = F

#### Street Like to the Site Information **General Information** Analyst: Robert Kahn Highway: Santiago Canyon Road 2218-11-01 From/To: N/O Live Oak Canyon Road Job Number: 7/6/2011 Jurisdiction: **Orange County** Date: PM Peak Hour Analysis Year: 2011 Time Period: Operational (LOS) Design (vp) Planning (LOS) Planning (vp) Class Input Data Shoulder Width: 8 Ft. NO Rolling? YES Terrain Level? Shoulder Width: 12 Ft. Two-way Volume: 731 vph Lane Width: 12 Ft. Lane Width: 8 Ft. **Directional Split:** North/East: 59.9 % South/West: **Roadway Direction:** North/South 40.1 % PHF: 0.951 Segment Length (L1): 0.57 Mi. % Trucks: 1.1 % % RVs 0.1 % % No-Passing: 100 % Access Pts per Mi.: 5.3 Pts./Mi. Average Travel Speed 0.93 Grade Adjustment Factor fg (Exhibit 20-7): 1,9 PCEs for Trucks ET (Exhibit 20-9): 1.1 PCEs for RVs ER (Exhibit 20-9) Heavy Vehicle Adjustment Factor fHV: 0.990 Over Capacity? NO Two-way Flow Rate Vp: 835 vph Over Capacity? NO Highest Directional Flow Rate: 500 vph Estimated Free Flow Speed: 55 mph Adj. for Lane Width/shoulder fLS (Exhibit 20-5): 0 mph Adj. for access points fA (Exhibit 20-6): 1.3 mph Free-Flow Speed FFS: (FFS = BFFS -fLS - fA): 53.75 mph Adj. for No Passing fNP (Exhibit 20-11): 3 mph Average Travel Speed ATS = FFS - .00776vp - fNP: 44.3 mph 4.1.4 **Percent Time-Spent Following** Grade Adjustment Factor fG (Exhibit 20-8); 0.9 PCE Trucks ET (Exhibit 20-10): 1.5 PCE RVs ER (Exhibit 20-10): 1.0 Heavy Vehicle Adjustment Factor fHV: 1.0 822 vph Over Capacity? NO Two-Way Flow Rate vp: **Highest Directional Flow Rate:** 493 vph Over Capacity? NO Base Percent Time spent following (BPTSF): 51.5 % Adj. for dir. Dist. And no passing fd/np: 16.5 % 68.1 % Percent Time-Spent Following (PTSF): Level of Service and Other Performance Measures D Level of Service (LOS) (Exhibit 20-2 or 20-4): 0.26 Volume to Capacity Ratio (v/c): Peak 15-minute VMT15: 110 veh-Mi. Peak Hour VMT 60: 417 veh-Mi. Peak 15-minute Travel Time (TT15): 2.5 veh-hrs Notes

- 1. If Vp is greater or equal to 3,200 vph terminate analysis the LOS = F
- 2. If the highest Directional Flow is greater or equal to 1,700 vph terminate analysis the LOS = F

| General Information                |                                       |        |            | Site Infor  | mation    |            |                  |
|------------------------------------|---------------------------------------|--------|------------|-------------|-----------|------------|------------------|
| Analyst:                           | Robert Kahn                           |        |            | Highway:    |           | Santiago   | Canyon Road      |
| Job Number:                        | 2218-11-01                            |        |            | From/To:    |           | S/O Mod    | jeska Grade Road |
| Date:                              | 7/6/2011                              |        |            | Jurisdictio | on:       | Orange C   | ounty            |
| Time Period:                       | AM Peak Hour                          |        |            | Analysis \  | /ear:     | 2011       |                  |
| Operational (LOS)                  | Desig                                 | n (vp) |            | Planning    | (LOS)     | Planning   | (vp)             |
| Input Data                         |                                       |        | Class      |             | 1         |            |                  |
| Shoulder Width:                    |                                       | 8 Ft.  | Terrain    | Level ?     | NO        | Rolling?   | YES              |
| Shoulder Width:                    |                                       | 12 Ft. |            |             |           |            |                  |
| Lane Width:                        | <                                     | 12 Ft. | Two-way \  | /olume:     | 652       | vph        |                  |
| Lane Width:                        | >                                     | 8 Ft.  | Directiona | -           |           |            |                  |
|                                    |                                       |        | North/Ea   | st:         | 50.9      | 9 %        |                  |
| Roadway Direction:                 | North/South                           |        | South/W    | est:        | 49.1      | l %        |                  |
|                                    |                                       |        | PHF:       |             | 0.926     | 5          |                  |
| Segment Length (L1):               | 0.57 Mi.                              |        | % Trucks:  |             |           | l %        |                  |
|                                    |                                       |        | % RV5      |             |           | l %        |                  |
|                                    |                                       |        | % No-Pass  | =           |           | ) %        |                  |
|                                    |                                       |        | Access Pts | per Mi.:    | 5.3       | B Pts./Mi. |                  |
| Average Travel Speed               |                                       |        |            | e.<br>P.    |           |            |                  |
| Grade Adjustment Factor fg (Ex     | hibit 20-7):                          |        | 0.93       | 3           |           |            |                  |
| PCEs for Trucks ET (Exhibit 20-9   | •                                     |        | 1,9        |             |           |            |                  |
| PCEs for RVs ER (Exhibit 20-9)     | ,                                     |        | 1.3        |             |           |            |                  |
| Heavy Vehicle Adjustment Fact      | or fHV:                               |        | 0.990      |             |           |            |                  |
| Two-way Flow Rate Vp:              |                                       |        | 765        | vph         | Over Capa | city?      | NO               |
| Highest Directional Flow Rate:     |                                       |        | 389        | vph         | Over Capa |            | NO               |
| Estimated Free Flow Speed:         |                                       |        |            | 5 mph       | •         | •          |                  |
| Adj. for Lane Width/shoulder fl    | S (Exhibit 20-5):                     |        |            | ) mph       |           |            |                  |
| Adj. for access points fA (Exhibi  |                                       |        |            | 3 mph       |           |            |                  |
| Free-Flow Speed FFS:               | (FFS = BFFS -fLS - f/                 | A):    |            | 5 mph       |           |            |                  |
| Adj. for No Passing fNP (Exhibit   | 20-11):                               |        | 3.9        | 9 mph       |           |            |                  |
| Average Travel Speed ATS = FFS     | S00776vp - fNP:                       |        | 43.9       | 9 mph       |           |            |                  |
| Percent Time-Spent Following       | * * * * * * * * * * * * * * * * * * * | -12714 | .ī<br>#    | ;*::        |           |            |                  |
| Grade Adjustment Factor fG (Ex     | chibit 20-8):                         |        | 0.5        | 9           |           |            |                  |
| PCE Trucks ET (Exhibit 20-10):     |                                       |        | 1.         |             |           |            |                  |
| PCE RVs ER (Exhibit 20-10):        |                                       |        | 1.0        |             |           |            |                  |
| Heavy Vehicle Adjustment Fact      | or fHV:                               |        | 1.0        |             |           |            |                  |
| Two-Way Flow Rate vp:              |                                       |        |            | vph         | Over Capa | city?      | NO               |
| Highest Directional Flow Rate:     |                                       |        |            | vph         | Over Capa |            | NO               |
| Base Percent Time spent follow     | ring (BPTSF):                         |        |            | 4 %         | •         | •          |                  |
| Adj. for dir. Dist. And no passing | · ,                                   |        |            | 2 %         |           |            |                  |
| Percent Time-Spent Following (     | •                                     |        | 67.        | 6 %         |           |            |                  |
| Level of Service and Other Per     | formance Measures                     |        | <b>5</b>   | <u>.</u>    |           |            |                  |
| Level of Service (LOS) (Exhibit 2  | Q-2 or 20-4):                         |        | ı          | כ           |           |            |                  |
| Volume to Capacity Ratio (v/c):    |                                       |        | 0.2        |             |           |            |                  |
| Peak 15-minute VMT15:              |                                       |        |            | veh-Mi.     |           |            |                  |
| Peak Hour VMT 60:                  |                                       |        |            | veh-Mi.     |           |            |                  |
| Peak 15-minute Travel Time (T      | F15):                                 |        |            | veh-hrs     |           |            |                  |
| Notes                              |                                       |        | 3          | •           |           |            |                  |

- 1. If Vp is greater or equal to 3,200 vph terminate analysis the LOS = F
- 2. If the highest Directional Flow is greater or equal to 1,700 vph terminate analysis the LOS = F

| General Information                |                        |               | a<br>Y     | Site Info      | mation    |          |                  |
|------------------------------------|------------------------|---------------|------------|----------------|-----------|----------|------------------|
| Analyst:                           | Robert Kahn            |               |            | Highway:       |           | Santiago | Canyon Road      |
| Job Number:                        | 2218-11-01             |               |            | From/To:       |           | S/O Mod  | jeska Grade Road |
| Date:                              | 7/6/2011               |               |            | Jurisdiction   | on:       | Orange C | ounty            |
| Time Period:                       | PM Peak Hour           |               |            | Analysis \     | /ear:     | 2011     |                  |
| Operational (LOS)                  | Design                 | (vp)          |            | Planning       | (LOS)     | Planning | (vp)             |
| Input Data                         |                        |               | Class      |                | 1         |          |                  |
| Shoulder Width:                    |                        | 8 Ft.         | Terrain    | Level?         | NO        | Rolling? | YES              |
| Shoulder Width:                    |                        | <b>12</b> Ft. |            |                |           |          |                  |
| Lane Width:                        | <                      | 12 Ft.        | Two-way \  | /olume:        | 756       | vph      |                  |
| Lane Width:                        | >                      | 8 Ft.         | Directiona | l Split:       |           |          |                  |
|                                    |                        |               | North/Ea   | st:            | 54.8      | 3 %      |                  |
| Roadway Direction:                 | North/South            |               | South/W    | est:           | 45.2      | 2 %      |                  |
|                                    |                        |               | PHF:       |                | 0.952     | 2        |                  |
| Segment Length (L1):               | 0.57 Mi.               |               | % Trucks:  |                | 1.1       | 1 %      |                  |
|                                    |                        |               | % RVs      |                | 0.1       | 1 %      |                  |
|                                    |                        |               | % No-Pass  |                |           | ) %      |                  |
|                                    |                        |               | Access Pts | per Mi.:       | 5.3       | Pts./Mi. |                  |
| Average Travel Speed               |                        |               |            | <b>3</b><br>:· |           |          |                  |
| Grade Adjustment Factor fg (Exh    | ibit 20-7)             |               | 0.93       | 3              |           |          |                  |
| PCEs for Trucks ET (Exhibit 20-9)  | •                      |               | 1.9        |                |           |          |                  |
| PCEs for RVs ER (Exhibit 20-9)     |                        |               | 1,:        |                |           |          |                  |
| Heavy Vehicle Adjustment Facto     | r fHV:                 |               | 0.99       |                |           |          |                  |
| Two-way Flow Rate Vp:              |                        |               |            | vph            | Over Capa | citv?    | NO               |
| Highest Directional Flow Rate:     |                        |               |            | vph            | Over Capa |          | NO               |
| Estimated Free Flow Speed:         |                        |               |            | 5 mph          |           |          |                  |
| Adj. for Lane Width/shoulder fLS   | (Exhibit 20-5):        |               |            | 0 mph          |           |          |                  |
| Adj. for access points fA (Exhibit | ·                      |               |            | 3 mph          |           |          |                  |
| Free-Flow Speed FFS:               | (FFS = BFFS -fLS - fA) | :             |            | 5 mph          |           |          |                  |
| Adj. for No Passing fNP (Exhibit 2 | 20-11):                |               | ;          | 3 mph          |           |          |                  |
| Average Travel Speed ATS = FFS     | 00776vp - fNP:         |               | 44.        | 1 mph          |           |          |                  |
| Percent Time-Spent Following       |                        |               | ्र<br>स    | i.<br>A.       |           |          |                  |
| Grade Adjustment Factor fG (Exh    | vibit 20-8):           |               | 0.9        | 0              |           |          |                  |
| PCE Trucks ET (Exhibit 20-10):     | IIDR 20-0J.            |               | 1.3        |                |           |          |                  |
| PCE RVs ER (Exhibit 20-10):        |                        |               | 1.0        |                |           |          |                  |
| Heavy Vehicle Adjustment Facto     | r fHV·                 |               | 1.0        |                |           |          |                  |
| Two-Way Flow Rate vp:              |                        |               |            | vph            | Over Capa | city?    | NO               |
| Highest Directional Flow Rate:     |                        |               |            | vph            | Over Capa |          | NO               |
| Base Percent Time spent following  | ng (BPTSE):            |               |            | 5 %            | Over cupu | Licy,    | 110              |
| Adj. for dir. Dist. And no passing | -, ,                   |               |            | 5 %            |           |          |                  |
| Percent Time-Spent Following (P    | · · · · ·              |               |            | 1 %            |           |          |                  |
| Level of Service and Other Perfo   | ormance Measures       |               | ·.         | !<br>-         |           |          |                  |
| Level of Service (LOS) (Exhibit 20 | -2 or 20-41·           |               | ı          | )              |           |          |                  |
| Volume to Capacity Ratio (v/c):    | 201 20 TJ.             |               | 0.2        |                |           |          |                  |
| Peak 15-minute VMT15:              |                        |               |            | veh-Mi.        |           |          |                  |
| Peak Hour VMT 60:                  |                        |               |            | ven-mi.        |           |          |                  |
| Peak 15-minute Travel Time (TT:    | 15):                   |               |            | veh-hrs        |           |          |                  |
| Notes                              |                        | 新 · 美         |            | <del>.</del>   | er e      |          |                  |

<sup>1.</sup> If Vp is greater or equal to 3,200 vph terminate analysis - the LOS = F

<sup>2.</sup> If the highest Directional Flow is greater or equal to 1,700 vph terminate analysis - the LOS = F

| General Information                |                         |        | •          | Site Info   | rmation    |            |                  |
|------------------------------------|-------------------------|--------|------------|-------------|------------|------------|------------------|
| Analyst:                           | Robert Kahn             |        |            | Highway     | •          | Santiago ( | Canyon Road      |
| Job Number:                        | 2218-11-01              |        |            | From/To     |            |            | jeska Grade Road |
| Date:                              | 7/6/2011                |        |            | Jurisdicti  |            | Orange Co  | -                |
| Time Period:                       | AM Peak Hour            |        |            | Analysis    |            | 2011       | o will y         |
| Operational (LOS)                  | Posign                  | (um)   |            | ·           |            |            | · · · · ·        |
| Operational (LOS)                  | Design                  | (VP)   |            | Planning    | (LO3)      | Planning ( | vpj              |
| Input Data                         |                         |        | Class      |             | 1          |            |                  |
| Shoulder Width:                    |                         | 8 Ft.  | Terrain    | Level?      | NO         | Rolling?   | YES              |
| Shoulder Width:                    |                         | 12 Ft. |            |             |            |            |                  |
| Lane Width:                        | <                       | 12 Ft. | Two-way \  | /olume:     | 614        | vph        |                  |
| Lane Width:                        | >                       | 8 Ft.  | Directiona | l Split:    |            |            |                  |
|                                    |                         |        | North/Ea   | st:         | 52.4       | %          |                  |
| Roadway Direction:                 | North/South             |        | South/W    | est:        | 47.6       | %          |                  |
|                                    |                         |        | PHF:       |             | 0.97       |            |                  |
| Segment Length (L1):               | 1.7 Mi.                 |        | % Trucks:  |             | 1.1        | . %        |                  |
|                                    |                         |        | % RVs      |             | 0.1        | . %        |                  |
|                                    |                         |        | % No-Pass  | ing:        | 100        | %          |                  |
|                                    |                         |        | Access Pts | per Mi.:    | 5.3        | Pts./Mi.   |                  |
| Average Travel Speed               |                         |        | **<br>*    | ,           |            |            |                  |
| Grade Adjustment Factor fg (Exh    | ibit 20-7);             |        | 0.93       | 3           |            |            |                  |
| PCEs for Trucks ET (Exhibit 20-9). | :                       |        | 1.9        | •           |            |            |                  |
| PCEs for RVs ER (Exhibit 20-9)     |                         |        | 1.:        | l           |            |            |                  |
| Heavy Vehicle Adjustment Facto     | r fHV:                  |        | 0.990      | )           |            |            |                  |
| Two-way Flow Rate Vp:              |                         |        | 687        | vph         | Over Capac | ity?       | NO               |
| Highest Directional Flow Rate:     |                         |        | 360        | vph         | Over Capac | ity?       | NO               |
| Estimated Free Flow Speed:         |                         |        | 55         | mph         |            |            |                  |
| Adj. for Lane Width/shoulder fLS   | (Exhibit 20-5):         |        | (          | ) mph       |            |            |                  |
| Adj. for access points fA (Exhibit | 20-6):                  |        | 1.3        | 3 mph       |            |            |                  |
| Free-Flow Speed FFS:               | (FFS = BFFS -fLS - fA): |        | 53.75      | mph         |            |            |                  |
| Adj. for No Passing fNP (Exhibit 2 | 20-11):                 |        | 3.9        | mph mph     |            |            |                  |
| Average Travel Speed ATS = FFS     | 00776vp - fNP:          |        | 44.5       | mph         |            |            |                  |
| Percent Time-Spent Following       |                         |        |            | j.          |            |            |                  |
| Grade Adjustment Factor fG (Exh    | uhit 20-81:             |        | 0.9        | 1           |            |            |                  |
| PCE Trucks ET (Exhibit 20-10):     | 1151. 20-0j.            |        | 1.5        |             |            |            |                  |
| PCE RVs ER (Exhibit 20-10):        |                         |        | 1.0        |             |            |            |                  |
| Heavy Vehicle Adjustment Factor    | r fHV/·                 |        | 1.0        |             |            |            |                  |
| Two-Way Flow Rate vp:              |                         |        |            | vph         | Over Capac | ritu?      | NO               |
| Highest Directional Flow Rate:     |                         |        |            | vph         | Over Capac | •          | NO               |
| Base Percent Time spent following  | ng (BPTSE):             |        | 44.9       |             | Over capac |            | 140              |
| Adj. for dir. Dist. And no passing |                         |        | 20.3       |             |            |            |                  |
| Percent Time-Spent Following (P    | •                       |        | 65.0       |             |            |            |                  |
| Level of Service and Other Perfo   | ·                       |        |            |             |            |            |                  |
|                                    |                         |        | :          | •           |            |            |                  |
| Level of Service (LOS) (Exhibit 20 | -2 or 20-4):            |        | (          | 3           |            |            |                  |
| Volume to Capacity Ratio (v/c):    |                         |        | 0.23       |             |            |            |                  |
| Peak 15-minute VMT15:              |                         |        |            | veh-Mi.     |            |            |                  |
| Peak Hour VMT 60:                  |                         |        |            | veh-Mi.     |            |            |                  |
| Peak 15-minute Travel Time (TT1    | 15):                    |        | 6.0        | veh-hrs     |            |            |                  |
| Notes                              |                         |        |            | \$ - 1<br>! |            |            |                  |

<sup>1.</sup> If Vp is greater or equal to 3,200 yph terminate analysis - the LOS = F

<sup>2.</sup> If the highest Directional Flow is greater or equal to 1,700 vph terminate analysis - the LOS = F

#### Site Information **General Information** Highway: Santiago Canyon Road Analyst: Robert Kahn Job Number: 2218-11-01 From/To: N/O Modjeska Grade Road 7/6/2011 Jurisdiction: **Orange County** Date: 2011 Time Period: PM Peak Hour Analysis Year: Operational (LOS) Planning (LOS) Planning (vp) Design (vp) Input Data Class 1 8 Ft. NO Rolling? YES Shoulder Width: Terrain Level? Shoulder Width: 12 Ft. Lane Width: 12 Ft. Two-way Volume: 774 vph Lane Width: 8 Ft. Directional Split: North/East: 48.8 % Roadway Direction: North/South South/West: 51.2 % 0.909 PHF: Segment Length (L1): 1.7 Mi. % Trucks: 1.1 % % RVs 0.1 % % No-Passing: 100 % Access Pts per Mi.: 5.3 Pts./Mi. **Average Travel Speed** 0.93 Grade Adjustment Factor fg (Exhibit 20-7): PCEs for Trucks ET (Exhibit 20-9): 1.9 PCEs for RVs ER (Exhibit 20-9) 1.1 0.990 Heavy Vehicle Adjustment Factor fHV: NO Two-way Flow Rate Vp: 925 vph Over Capacity? NO **Highest Directional Flow Rate:** 473 vph Over Capacity? Estimated Free Flow Speed: 55 mph Adj. for Lane Width/shoulder fLS (Exhibit 20-5): 0 mph Adj. for access points fA (Exhibit 20-6): 1.3 mph (FFS = BFFS -fLS - fA): 53.75 mph Free-Flow Speed FFS: Adj. for No Passing fNP (Exhibit 20-11): 3 mph Average Travel Speed ATS = FFS - .00776vp - fNP: 43.6 mph <u>~</u> Percent Time-Spent Following 0.9 Grade Adjustment Factor fG (Exhibit 20-8): PCE Trucks ET (Exhibit 20-10): 1.5 PCE RVs ER (Exhibit 20-10): 1.0 1.0 Heavy Vehicle Adjustment Factor fHV: 911 vph NO Over Capacity? Two-Way Flow Rate vp: NO Highest Directional Flow Rate: 466 vph Over Capacity? Base Percent Time spent following (BPTSF): 55.1 % Adj. for dir. Dist. And no passing fd/np: 16.1 % 71.2 % Percent Time-Spent Following (PTSF): Level of Service and Other Performance Measures D Level of Service (LOS) (Exhibit 20-2 or 20-4): Volume to Capacity Ratio (v/c): 0.29 362 veh-Mi. Peak 15-minute VMT15: Peak Hour VMT 60: 1,316 veh-Mi. Peak 15-minute Travel Time (TT15): 8.3 veh-hrs

Notes

<sup>1.</sup> If Vp is greater or equal to 3,200 vph terminate analysis - the LOS = F

<sup>2.</sup> If the highest Directional Flow is greater or equal to 1,700 vph terminate analysis - the LOS = F

## Appendix L

Santiago Canyon Road Travel Time Runs and Vehicle Classification Counts

# SANTIAGO CANYON ROAD PEAK HOUR TRAVEL TIME STUDY

| Location                                        |            |                      | AM Peak Hou            | Travel Time | s                    |                        |
|-------------------------------------------------|------------|----------------------|------------------------|-------------|----------------------|------------------------|
| SANTIAGO CANYON ROAD                            |            |                      | . <b>AN</b>            | А           |                      |                        |
| (FROM LIVE OAK CANYON<br>ROAD TO MODJESKA GRADE |            | NB                   |                        |             | SB                   | 1                      |
| ROAD) Distance = 1.2 Miles                      | Start Time | Travel Time<br>(Sec) | Average Speed<br>(MPH) | Start Time  | Travel Time<br>(Sec) | Average Speed<br>(MPH) |
| Run 1                                           | 7:33 AM    | 81                   | 53.3                   | 7:29 AM     | 78                   | 55.4                   |
| Run 2                                           | 7:41 AM    | 88                   | 49.1                   | 7:37 AM     | 80                   | 54.0                   |
| Run 3                                           | 7:48 AM    | 84                   | 51.4                   | 7:45 AM     | 77                   | 56.1                   |
| Run 4                                           | 7:57 AM    | 85                   | 50.8                   | 7:52 AM     | 81                   | 53.3                   |
| Run 5                                           | 8:05 AM    | 91                   | 47.5                   | 8:01 AM     | 77                   | 56.1                   |
| Average                                         |            | 85.8                 | 50.4                   |             | 78.6                 | 55.0                   |

| A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA |               | $0 \leq \log ((1+\beta) \log \log \log \log \log \log \log \log \log \log \log \log \log \log \log \log \log \log \log$ | Visitedi ilini<br>Zivi Pedi ilini | and recovering the contract of the second | kirkat bulancabasa si seli bilas bubbili. |                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------------------------------------------|-------------------------------------------|------------------------|
| Location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |               |                                                                                                                         | PM Peak Hour                      | Travel Time                               | S                                         | di di Makabu           |
| Santiago Canyon Road<br>(From Live Oak Canyon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |               |                                                                                                                         | PN                                | М                                         |                                           |                        |
| ROAD TO MODJESKA GRADE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | NB                                                                                                                      |                                   |                                           | SB                                        |                        |
| ROAD) Distance = 1.2 Miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Start Time    | Travel Time<br>(Sec)                                                                                                    | Average Speed<br>(MPH)            | Start Time                                | Travel Time<br>(Sec)                      | Average Speed<br>(MPH) |
| Run 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4:56 PM       | 99                                                                                                                      | 43.6                              | 5:01 PM                                   | 81                                        | 53.3                   |
| Run 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5:05 PM       | 83                                                                                                                      | 52.0                              | 5:12 PM                                   | 78                                        | 55.4                   |
| Run 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5:16 PM       | 88                                                                                                                      | 49.1                              | 5:21 PM                                   | 78                                        | 55.4                   |
| Run 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5:25 PM       | 92                                                                                                                      | 47.0                              | 5:29 PM                                   | 79                                        | 54.7                   |
| Run 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5:35 PM       | 96                                                                                                                      | 45.0                              | 5:32                                      | 79                                        | 54.7                   |
| Average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |               | 91.6                                                                                                                    | 47.3                              |                                           | 79                                        | 54.7                   |
| 2-Way A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Average Trave | el Time Speed                                                                                                           | d for PM Peak                     | Hour = 51.0                               | <br>) Mph                                 |                        |

Table 12 Santiago Canyon Road PM Peak Hour Vehicle Classification Counts

Saddle Crest Traffic Impact Study 2218-11-01 Project: Job #:

Santiago Canyon Road N/O Ridgeline Road Location:

Day: Date:

Tuesday 6/21/2011 Time

4:45 PM - 5:45 PM

|                                     | North | Northbound |     | nbound | Total |        |
|-------------------------------------|-------|------------|-----|--------|-------|--------|
| Vehicle Classification              | No.   | %          | No. | %      | No.   | %      |
| Autos                               | 399   | 98.5%      | 377 | 99.0%  | 776   | 98.7%  |
| Heavy Trucks<br>(More than 4 Tires) | 5     | 1.2%       | 4   | 1.0%   | 9     | 1.1%   |
| Recreational Vehicles               | 1     | 0.2%       | 0   | 0.0%   | 1     | 0.1%   |
| Total                               | 405   | 51.5%      | 381 | 48.5%  | 786   | 100.0% |

|                   |       | Northbound   |               |       | Southbound   |               |
|-------------------|-------|--------------|---------------|-------|--------------|---------------|
| Time              | Autos | Heavy Trucks | Rec. Vehicles | Autos | Heavy Trucks | Rec. Vehicles |
| 4:45 PM - 4:49 PM | 18    | 0            | 1             | 19    | 1            | . 0           |
| 4:50 PM - 4:54 PM | 24    | 1            | 0             | 22    | 0            | 0             |
| 4:55 PM - 4:59 PM | 39    | 0            | 0             | 19    | 1            | 0             |
| 5:00 PM - 5:04 PM | 33    | 0            | 0             | 35    | 0            | 0             |
| 5:05 PM - 5:09 PM | 45    | 0            | 0             | 38    | 0            | 0             |
| 5:10 PM - 5:14 PM | 47    | 0            | 0             | 29    | 0            | 0             |
| 5:15 PM - 5:19 PM | 50    | 1            | 0             | 24    | 0            | 0             |
| 5:20 PM - 5:24 PM | 22    | 0            | 0             | 40    | 1            | 0             |
| 5:25 PM - 5:29 PM | 34    | 11           | 0             | 32    | 0            | 0             |
| 5:30 PM - 5:34 PM | 30    | 0            | 0             | 43    | 1            | 0             |
| 5:35 PM - 5:39 PM | 30    | 2            | 0             | 36    | 0            | 0             |
| 5:40 PM - 5:44 PM | 27    | 0            | 0             | 40    | 0            | 0             |
| TOTAL             | 399   | 5            | 1             | 377   | 4            | 0             |

Table 13
Santiago Canyon Road PM Peak Hour Vehicle Classification Counts

Project:

Saddle Crest Traffic Impact Study

Job #: Location: 2218-11-01

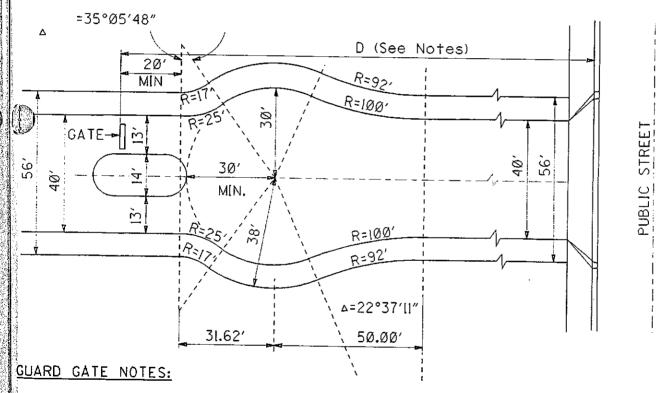
: Santiago Canyon Road N/O Ridgeline Road

Day: Date: Thursday 6/30/2011

Time

7:15 PM - 8:15 PM

|                                     | North | nbound | South | nbound | Total |        |
|-------------------------------------|-------|--------|-------|--------|-------|--------|
| Vehicle Classification              | No.   | %      | No.   | %      | No.   | %      |
| Autos                               | 323   | 98.2%  | 292   | 97.0%  | 615   | 97.6%  |
| Heavy Trucks<br>(More than 4 Tires) | 6     | 1.8%   | 9     | 3.0%   | 15    | 2.4%   |
| Recreational Vehicles               | 0     | 0.0%   | 0     | 0.0%   |       | 0.0%   |
| Total                               | 329   | 52.2%  | 301   | 47.8%  | 630   | 100.0% |


|                   | Northbound |              | Southbound    |       |              |               |
|-------------------|------------|--------------|---------------|-------|--------------|---------------|
| Time              | Autos      | Heavy Trucks | Rec. Vehicles | Autos | Heavy Trucks | Rec. Vehicles |
| 4:45 PM - 4:49 PM | 21         | 0            | 0_            | 19    | 2            | 0             |
| 4:50 PM - 4:54 PM | 23         | 0            | 0             | 27    | 0            | 0             |
| 4:55 PM - 4:59 PM | 36         | 0            | 0             | 12    | 0            | 0             |
| 5:00 PM - 5:04 PM | 31         | 2            | 0             | 24    | 0            | 0             |
| 5:05 PM - 5:09 PM | 35         | 0            | 0             | 38    | 11           | 0             |
| 5:10 PM - 5:14 PM | 24         | 0            | 0             | 16    | 11           | 0             |
| 5:15 PM - 5:19 PM | 22         | 0            | 0             | 19    | 0            | 0             |
| 5:20 PM - 5:24 PM | 29         | 2            | 0             | 33    | 3            | 0             |
| 5:25 PM - 5:29 PM | 24         | 0            | 0             | 39    | 1            | 0             |
| 5:30 PM - 5:34 PM | 21         | 1            | 0             | 16    | 0            | 0             |
| 5:35 PM - 5:39 PM | 32         | 1            | 0             | 27    | 0            | 0             |
| 5:40 PM - 5:44 PM | 25         | 0            | 0             | 22    | 11           | 0             |
| TOTAL             | 323        | 6            | 0             | 292   | 9            | 0             |

## Appendix M

County of Orange Standard Plan No. 1107

### NOTES:

- 1. Private streets shall be permitted only as described in the Orange County Subdivision Code, subject to review and approval by the Engineer, the Subdivision Committee, and the Planning Commission.
- 2. Private streets shall provide a paved travel way in conformance with Std. Plan 1107. Walkways shall be provided on all private streets in conformance with Std. Plans 1107 and 1205 unless an alternate pedestrian circulation system is provided meeting the approval of the Engineer.
- 3. Required pavement structural section shall be determined by the Engineer.
- 4. Entryways to private tracts shall be designed to emphasize their private status. Textured concrete or wide flare driveways, guard gates or other access controls shall be required for private tracts. Entry gates shall be set back from the near curb line of any public street to provide a minimum 100 feet of storage for entering vehicles to stack without interfering with through traffic. Minimum design criteria and required features for guard gates are shown below:



D=1' Per Dwelling Unit Served, 100' Minimum
 (Multiple Lanes may be used to satisfy storage distance requirement.)

| DRANGE COUNTY ENVIRONMENTAL MANAGEMENT AGENCY                                        | STD. PLAN       |
|--------------------------------------------------------------------------------------|-----------------|
| ted: Res. 77-92 Revised: Res. 78-791  Approved C.R. Nelson, Director of Public Works | 1107            |
| PRIVATE STREET STANDARDS                                                             | SHT. 3 OF 4     |
| <u>```</u>                                                                           | 1 3H1, 3 UF 4 4 |

## Appendix N

Traffic Signal and Signing/Striping Cost Estimates

### TRAFFIC SIGNAL COST ESTIMATE

Date:

July 13, 2011

Location:

Santiago Canyon Rd and Live Oak Canvon Rd

| Job Number: 2218-11-01 |                                                                 | Canyon Rd                  |             |             |           |  |  |
|------------------------|-----------------------------------------------------------------|----------------------------|-------------|-------------|-----------|--|--|
| By:<br>tem No.         | RK Engineering Group, Inc.  Description                         | Prepared for               | <del></del> | Unit C4     | O1        |  |  |
| 1                      |                                                                 | Qty.                       | Unit        | Unit Cost   | Item Cost |  |  |
|                        | Controller w/Cabinet (Type 90)                                  | 1                          | Ea.         | \$19,150.00 | \$19,15   |  |  |
| 37                     | Foundation (Controller)                                         | 1                          | Ea.         | \$1,125.00  | \$1,12    |  |  |
| 12                     | Elect. Service Meter (Type II)                                  | 1                          | Ea.         | \$1,980.00  | \$1,98    |  |  |
| 38                     | Foundation (Service Meter)                                      | 1                          | Ea.         | \$660.00    | \$66      |  |  |
| 25                     | Type 26 Pole (30'h) - 40' Mast Arm                              | 1                          | Ea.         | \$4,620.00  | \$4,62    |  |  |
| 43                     | Foundation, 36" x 9'd (Re-bar) <type 18-27(c4),28,29=""></type> | 1                          | Ea.         | \$1,785.00  | \$1,78    |  |  |
| 18                     | Type 17 Pole (30'h) - 20' Mast Arm                              | 1                          | Ea.         | \$2,970.00  | \$2,97    |  |  |
| 42                     | Foundation, 36" x 7'd (Re-bar) <type 17,18-27(c3)=""></type>    | 1                          | Ea.         | \$1,320.00  | \$1,32    |  |  |
| 15                     | Type 1A Pole (10'h)                                             | 2                          | Ea.         | \$470.00    | \$94      |  |  |
| 39                     | Foundation, 24" x 3'd (No Re-bar) <type 1a=""></type>           | 2                          | Ea.         | \$430.00    | \$86      |  |  |
| 46                     | Signal Head,12"Ø 3-section LED                                  | 6                          | Ea.         | \$860.00    | \$5,16    |  |  |
| 50                     | LED Module, Signal (Arrow: R,Y or G)                            | 2                          | Ea.         | \$200.00    | \$40      |  |  |
| 55                     | Illuminated Street Name Sign (I.I.S.N.S.)                       | 2                          | Ea.         | \$1,060.00  | \$2,12    |  |  |
| 126                    | Pull Box 6T                                                     | 6                          | Ea.         | \$345.00    | \$2,07    |  |  |
| 63                     | 1½" Conduit (Trenched)                                          | 855                        | LF          | \$11.25     | \$9,6     |  |  |
| 65                     | 2" Conduit (Trenched)                                           | 1200                       | LF          | \$16.50     | \$19,80   |  |  |
| 69                     | 3" Conduit (Trenched)                                           | 170                        | LF          | \$23.50     | \$3,99    |  |  |
| 160                    | SIC 6-pair #19 Cable                                            | 890                        | LF          | \$3.20      | \$2,84    |  |  |
| 8                      | Controller Modification (TS Mod.)                               | 1                          | LS          | \$660.00    | \$60      |  |  |
| 58                     | Pull Box #5                                                     | 2                          | Ea.         | \$235.00    | \$47      |  |  |
| 125                    | Pull Box 5T                                                     | 2                          | Ea.         | \$250.00    |           |  |  |
| 76                     | Detector Loop, 6'Ø                                              | 15                         | Ea.         | \$370.00    | \$5,5     |  |  |
| 102                    | Remove & Salvage [RS] Sign/Post                                 | 2                          | Ea.         | \$66.00     | \$1;      |  |  |
| 108                    | Sandblast (Pavement Markings)                                   | 160                        | SF          | \$1.98      | \$3.      |  |  |
| 87                     | Wiring, Signal (New TS)                                         | 1                          | LS          | \$8,900.00  | \$8,90    |  |  |
| 143                    | Furnish & Install Signal Post Mounted Sign                      | 8                          | Ea.         | \$120.00    | \$96      |  |  |
| 1                      |                                                                 | 1                          |             | 7.25.55     |           |  |  |
|                        |                                                                 |                            |             | SUBTOTAL    | \$98,9°   |  |  |
|                        |                                                                 |                            | gineering   | 10.00%      | \$9,8     |  |  |
|                        |                                                                 | Fees, Permits, Supervision |             | 15.00%      | \$14,83   |  |  |
|                        |                                                                 | Conti                      | ingencies   | 15.00%      | \$14,83   |  |  |

### TRAFFIC SIGNAL COST ESTIMATE

Date:

July 13, 2011

Location:

El Toro Rd @ Glenn Ranch Rd

| By:      | RK Engineering Group, Inc.                         | Prepared for     |                                     |                  |               |
|----------|----------------------------------------------------|------------------|-------------------------------------|------------------|---------------|
| Item No. | Description                                        | Qty.             | Unit                                | Unit Cost        | Item Cost     |
| 107      | Sandblast (Striping)                               | 4150             | LF                                  | \$0.30           | \$1,24        |
| 113      | Paint Double Yellow Line (Detail 21/22/27)         | 1200             | LF                                  | \$0.44           | \$52          |
| 112      | Paint Channelizing Line (Detail 38/38A)            | 520              | LF                                  | \$0.44           | \$22          |
| 115      | Paint Lane Striping (Detail 8/9/11/12)             | 300              | LF                                  | \$0.29           | \$8           |
| 105      | Thermoplastic Pavement Markings (Arrows & Legends) | 156              | SF                                  | \$4.29           | \$66          |
| 151      | RPM (removal)                                      | 43               | Ea.                                 | \$4.00           | \$17          |
| 119      | R.P.M. (Reflective)                                | 43               | Ea.                                 | \$6.60           | \$28          |
| 8        | Controller Modification (TS Mod.)                  | 1                | LS                                  | \$660.00         | \$66          |
|          |                                                    |                  |                                     |                  |               |
|          |                                                    |                  | -                                   |                  |               |
|          |                                                    |                  |                                     |                  |               |
|          |                                                    |                  |                                     |                  |               |
|          |                                                    |                  |                                     | CURTOTAL         | <b>#0.0</b> / |
|          |                                                    |                  |                                     | SUBTOTAL         | \$3,86        |
|          | F                                                  | ees, Permits, Su | gineering<br>pervision<br>ingencies | 10.00%<br>15.00% | \$38<br>\$58  |
|          |                                                    | Conti            | ngendes                             | 15.00%           | \$58          |